• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New details of HIV life cycle

Bioengineer by Bioengineer
October 5, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Evan Krape

Research by a multi-institutional team, including two members from the University of Delaware, has revealed new details about the HIV virus capsid structure and how it develops.

A capsid is a protein shell that encloses a virus's genetic blueprint.

The study, led by Cornell University scientists, was published Aug. 1 in the journal Nature and focused on the role of a naturally occurring, small molecule called IP6. The researchers found that IP6 plays an important part in both the immature and mature phases of the HIV life cycle as the virus assembles its structure.

"This small molecule acts in two different assembly steps in the pathway," said Robert Dick, a postdoctoral researcher at Cornell and the first author of the paper. "A cell can make millions of virus particles, but if they don't go through the maturation process, they are not infectious."

The discovery of the key role played by IP6 "opens a door for development of new treatments" that would target that molecule, said Juan R. Perilla, assistant professor of chemistry and biochemistry at the UD.

Perilla and UD doctoral student Chaoyi Xu, who are co-authors of the paper, conducted computational and analytical work for the research project, using supercomputers to model the capsid of the HIV virus and the role of IP6 in its assembly.

"Many experimental techniques are just a snapshot," Perilla said. "With the computational microscope [the use of laboratory data in combination with supercomputers], you can actually see how things move."

Perilla and Xu ran their simulations through the Extreme Science and Engineering Environment (XSEDE) project funded by the National Science Foundation, which allocates supercomputer resources to specific research problems. The computers they used were housed at the Pittsburgh Supercomputing Center and the Texas Advanced Computing Center.

Perilla's research team at UD has done similar types of simulations and analysis on other aspects of HIV and on the hepatitis B virus. The researchers have also investigated other retroviruses, in addition to HIV, including equine and poultry viruses.

"Just as we found that HIV uses IP6 to develop and become infectious, we want to learn how retroviruses in general 'learned' to use these kinds of molecules," Perilla said. "Viruses always evolve, but this particular mechanism is especially important.

"When did it evolve? It's a question we haven't answered yet."

###

More about the multi-institution research

The paper published in Nature, "Inositol Phosphates are Assembly Cofactors for HIV-1," was written by researchers from the universities of Virginia and Missouri, the European Molecular Biology Laboratory in Germany and the Institute of Science and Technology in Austria, in addition to Cornell and UD.

The research was funded by the National Institutes of Health, with computer time allocated by XSEDE. The Texas Advanced Computing Center, at the University of Texas at Austin, designs and operates some of the world's most powerful computing resources.

More information about the research findings are available on the Cornell Chronicle news website.

Media Contact

Peter Kerwin
[email protected]
302-831-8749
@UDResearch

http://www.udel.edu

Original Source

https://www.udel.edu/udaily/2018/september/hiv-virus-research-juan-perilla/

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.