• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

More persistent weather patterns in US linked to Arctic warming

Bioengineer by Bioengineer
September 26, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NASA Earth Observatory

Persistent weather conditions, including dry and wet spells, generally have increased in the United States, perhaps due to rapid Arctic warming, according to a Rutgers-led study.

Persistent weather conditions can lead to weather extremes such as drought, heat waves, prolonged cold and storms that can cost millions of dollars in damage and disrupt societies and ecosystems, the study says.

Scientists at Rutgers University-New Brunswick and the University of Wisconsin-Madison examined daily precipitation data at 17 stations across the U.S., along with large upper-level circulation patterns over the eastern Pacific Ocean and North America.

Overall, dry and wet spells lasting four or more days occurred more frequently in recent decades, according to the study published online today in Geophysical Research Letters. The frequency of persistent large-scale circulation patterns over North America also increased when the Arctic was abnormally warm.

In recent decades, the Arctic has been warming at least twice as fast as the global average temperature, the study notes. The persistence of warm Arctic patterns has also increased, suggesting that long-duration weather conditions will occur more often as rapid Arctic warming continues, said lead author Jennifer Francis, a research professor in Rutgers' Department of Marine and Coastal Sciences.

"While we cannot say for sure that Arctic warming is the cause, we found that large-scale patterns with Arctic warming are becoming more frequent, and the frequency of long-duration weather conditions increases most for those patterns," said Francis, who works in the School of Environmental and Biological Sciences.

The results suggest that as the Arctic continues to warm and melt, it's likely that long-duration events will continue to occur more often, meaning that weather patterns – heat waves, droughts, cold spells and stormy conditions – will likely become more persistent, she said.

"When these conditions last a long time, they can become extreme events, as we've seen so often in recent years," she said. "Knowing which types of events will occur more often in which regions and under what background conditions – such as certain ocean temperature patterns – will help decision-makers plan for the future in terms of infrastructure improvements, agricultural practices, emergency preparedness and managed retreat from hazardous areas."

Future research will expand the analysis to other regions of the Northern Hemisphere, develop new metrics to find causal connections, and analyze projections to assess future risks from extreme weather events linked to persistent patterns, she said.

###

Study co-authors include Natasa Skific, research associate in Rutgers' Department of Marine and Coastal Sciences, and Stephen J. Vavrus at the University of Wisconsin-Madison.

Media Contact

Todd Bates
[email protected]
848-932-0550
@RutgersU

http://www.rutgers.edu

Original Source

https://news.rutgers.edu/more-persistent-weather-patterns-us-linked-arctic-warming/20180919#.W6KL72hKi70 http://dx.doi.org/10.1029/2018GL080252

Share15Tweet7Share2ShareShareShare1

Related Posts

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025
blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insightful AI Estimates Lithium-Ion Battery Lifespan

Next-Gen Oncology: Precision Genomics Meets Immuno-Engineering

Prostate-Specific Antigen Testing: Past, Present, Future

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.