• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Robot Powered by Rat Neurons

Bioengineer by Bioengineer
October 29, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

He’s assisted students at the University of Reading, in England, who wished to implant magnets in the tips of their fingers and at least one who wished for an electrode in the tongue (with the help, Warwick says, of a Manchester tattoo artist who goes by the name “Dr. Evil”).

More recently, he’s been growing rat neurons on a 128-electrode array and using them to control a simple robot consisting of two wheels with a sonar sensor. The rudimentary little toy has no microprocessor of its own — it depends entirely on a rat embryo’s brain cells. The interesting question is just how big one of these neuron-electrode hybrid brains can grow, and those brain cell networks are now getting more complicated, and more legitimately mammalian, Warwick said this week in a keynote speech at the IEEE Biomedical Circuits and Systems conference. Warwick’s twist predates the living rat-controlled robot we wrote about recently, and it just goes to show that weird cyborg animal projects have virtually unlimited potential.

To start off a rat brain robot, embryonic neurons are separated out and allowed to grow on an electrode array. Within minutes the neurons start to push out tentacles and link up to each other, becoming interconnected dendrites and axons. A dense mesh of about 100,000 neurons can grow within several days. After about a week, Warwick and his collaborators can start to pulse the electrodes under the neural mesh in search of a pathway — that is, when neurons near an active electrode fire, another group of neurons on a different side of the array shows an inclination to fire as well.

Once they have a pathway — the groups fire in tandem at least a third of the time — the University of Reading researchers can use that connection to get the robot to roam around and learn to avoid crashing into walls. They connect the electrode array to the robot using Bluetooth. When the sonar senses it’s nearing a wall, it stimulates the electrode at one end of the neural pathway, and at first the brain sends back a coherent response only every once in awhile. The robot interprets the response as an instruction to turn its wheels. With time and repetition, the neural pathways become stronger, and the robot runs into the walls less frequently. In effect, the robot works out for itself how to not bash into obstacles.

Source: http://spectrum.ieee.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.