• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Mathematics meets biology to uncover unexpected biorhythms

Bioengineer by Bioengineer
September 20, 2018
in Health
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Baylor College of Medicine

A novel mathematical approach has uncovered that some animal cells have robust 12-hour cycles of genetic activity, in addition to circadian or 24-hour cycles. The method, published in the journal PLOS ONE, assessed the periodicity of gene expression data and compared the results with those obtained with other computational methods. As opposed to the other methods, this novel approach showed not only the existence of unsuspected biological cycles, but also that the 12-hour cycles work independently from the 24-hour cycles, which has been confirmed by laboratory experiments. These findings open a new area of study of how gene functions over time influence health and disease.

"Circadian rhythms are physical, mental and behavioral changes that follow a 24-hour cycle driven by environmental light and darkness. One of the best known circadian cycles is sleeping at night and being awake during the day," said corresponding author Dr. Clifford C. Dacso, professor of molecular and cellular biology and member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine. "These biological rhythms reflect complex interactions at the molecular level that occur among the paths mediating the expression of genes into active proteins carrying functions in the cell."

There is evidence, however, that other biological cycles exist in addition to 24-hour rhythms. Blood pressure, body temperature, cognitive performance, some circulating hormones, reaction to stress and responses to drug therapy, for instance, appear to follow a 12-hour rhythm, but little is known about the biological basis of it. Dacso and his colleagues set out to find out answers.

"We decided that we needed to apply an unbiased mathematical approach different from those other groups were using," Dacso said. He contacted colleagues at the Department of Electrical and Computer Engineering at Rice University and they referred him to Dr. Athanasios Antoulas, a professor in that department who also is a fellow at the Max-Planck Society in Germany.

Antoulas is a mathematician and an engineer with expertise in processing digital signals such as electronic waves. He had developed a new mathematical tool called the matrix pencil method that allowed him to uncover frequencies from very noisy digital data.

"Other mathematical methods approached this type of problem by asking, does a specific wave form exist in the data? They were already biased to find a particular type of wave," said Antoulas, who is the first author of the paper as well as adjunct professor of molecular and cellular biology at Baylor. "On the other hand, the method that we proposed asked an unbiased question; what type of wave is present in the data, if any?"

When math meets biology

The researchers applied the mathematical method Antoulas used to analyze electronic digital signals to analyze a biological phenomenon, specifically gene expression data that had been collected every hour for 36 hours. The researchers analyzed more than 18,000 mouse liver genes involved in a variety of cellular processes, including metabolism, cell stress, cell cycle and cellular respiration.

"Our method revealed the fundamental cycles present in each data set collected for each gene," Antoulas said. "We confirmed the 24-hour circadian cycles and uncovered genes whose expression over time followed a 12-hour cycle that was not evident when using other computational methods."

"We took a closer look at the 12- and 24-hour cycles," Dacso said. "The matrix pencil method revealed that these cycles were independent, and this has been confirmed by laboratory experiments showing that knocking down genes that follow a 24-hour cycle does not affect the expression pattern of the 12-hour genes."

"By looking at the function of genes over time, as opposed to looking at a single moment, we have uncovered that fundamental cell functions, such as inflammation, stress response, protein quality control and energy supply, follow certain cycles," Dacso said. "This finding has enormous implications for redefining aspects of human health as controlled by genes."

"We and others have shown that disturbing the 24-hour clocks may lead to diseases of metabolism," said co-author Dr. Bert O'Malley, chancellor and professor of molecular and cellular biology and Thomas C. Thompson Chair in Cell Biology at Baylor College of Medicine. "For instance, experimental evidence shows that night-shift workers who periodically change their night and day shifts or people who travel overseas often alter their sleep cycles, and this seems to make them prone to gain weight and develop diabetes and other alterations of metabolism that may lead to disease. It's not a good idea to disturb the circadian rhythm on a regular basis. We anticipate that disturbing the other cycles may also affect health and disease."

###

Other contributors to this work include Bokai Zhu, Qiang Zhang and Brian York. The authors are affiliated with one or more of the following institutions: Baylor College of Medicine, Rice University and the Max-Planck Institute for the Dynamics of Complex Technical Systems, Germany.

Financial support for this project was provided by the National Institutes of Health (NIDDK), the National Science Foundation, the American Diabetes Association, Kay and Rene Joyce Foundation and the German Science Foundation. Additional support was provided by the Max-Planck Institut fu?r Dynamik Komplexer Technischer Systeme, Center for the Advancement of Science in Space, Brockman Medical Research Foundation, Phillip J. Carroll, Jr Professorship, Joyce Family Foundation, Sonya and William Carpenter and Peter J. Fluor Family Fund.

Media Contact

Dipali Pathak
[email protected]
713-798-4710
@bcmhouston

https://www.bcm.edu/news

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0198503

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    52 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.