• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers develop microbubble scrubber to destroy dangerous biofilms

Bioengineer by Bioengineer
September 19, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by L. Brain Stauffer

CHAMPAIGN, Ill. — Stiff microbial films often coat medical devices, household items and infrastructure such as the inside of water supply pipes, and can lead to dangerous infections. Researchers have developed a system that harnesses the power of bubbles to propel tiny particles through the surfaces of these tough films and deliver an antiseptic deathblow to the microbes living inside.

Biofilms are slimy colonies of microbes held together by internal scaffolds, clinging to anything they touch. About 80 percent of all medical infections originate from biofilms that invade the inner workings of hospital devices and implants inside patients. Eradication is difficult because traditional disinfectants and antibiotics cannot effectively penetrate a biofilm's tough surface, the researchers said.

In the journal Applied Materials and Interfaces, a team led by researchers at the University of Illinois at Urbana-Champaign describes how they used diatoms – the tiny skeletons of algae – loaded with an oxygen-generating chemical to destroy microbes.

"Most of us get those black or yellow spots in our showers at home," said co-author Hyunjoon Kong, a professor of chemical and biomolecular engineering and a Carle Illinois College of Medicine affiliate. "Those spots are biofilms and most of us know it takes a lot of energy to scrub them away. Imagine trying to do this inside the confined space of the tubing of a medical device or implant. It would be very difficult."

Looking to nature and basic mechanics for a solution, the researchers developed a system that uses naturally abundant diatoms along with hydrogen peroxide and tiny oxygen-generating sheets of the compound manganese oxide.

"We could have fabricated a particle using 3D printers, but luckily nature already provided us with a cheap and abundant option in diatoms," said co-author and postdoctoral researcher Yongbeom Seo. "The species of diatom we selected are hollow, highly porous and rod-shaped, providing a lot of surface area for the bubbles to form and a channel for the bubbles to escape."

The chemical reaction between the hydrogen peroxide and manganese oxide nanosheets takes place within the empty space inside the diatom. The result is a flourish of microbubbles that flow through the tiny channel, propelling the rigid diatoms forward with enough force to break up the surface and internal structure of the biofilms, the researchers said.

To see a video of the microbubblers in action, click here.

"We dope the particles with nanosheets of manganese oxide, then mix them with hydrogen peroxide and apply that to the surface of the biofilm," Kong said. "Once the diatoms break through to the internal structure of the biofilm, they continue to expel bubbles and facilitate the entry of hydrogen peroxide, which is an effective disinfectant against bacteria and fungus."

The researchers believe that their success is a result of a decision to focus on the mechanical aspects of biofilm destruction, not the chemical aspects of simply killing microbes.

"We have arrived at a mechanistic solution for this problem and the possibilities for this technology are endless," said co-author Simon Rogers, a professor of chemical and biomolecular engineering. "We are discussing our research with clinicians who have many exciting ideas of how to use this system that we did not even think of originally, such as the removal of dental plaque."

###

U. of I. researchers Jiayu Leong, Jun Dong Park, Yu-Tong Hong, Yu-Heng Deng, Vitaliy Dushnov and Joonghui Soh also contributed to this study. Additional co-authors include Sang-Hyon Chu of the National Institute of Aerospace, Cheol Park of the NASA Langley Research Center, Dong Hyun Kim of the Korea Institute of Industrial Technology and Yi Yan-Yang of the Institute of Bioengineering and Nanotechnology in Singapore.

The National Institutes of Health, the National Science Foundation and the Korea Institute of Industrial Technology supported this research.

Editor's notes:

To reach Hyunjoon Kong, call 217-333-1178; [email protected].

The paper "Diatom microbubbler for active biofilm removal in confined spaces" is available online and from the U. of I. News Bureau. DOI: 10.1021/acsami.8b08643

Media Contact

Lois Yoksoulian
[email protected]
217-244-2788
@NewsAtIllinois

http://www.illinois.edu

Original Source

https://news.illinois.edu/view/6367/696123 http://dx.doi.org/10.1021/acsami.8b08643

Share15Tweet7Share2ShareShareShare1

Related Posts

CMTR2 Mutation in Lung Cancer Reveals Therapy Targets

November 6, 2025

Motor Cortex Directly Drives Limb Muscles in Climbing

November 6, 2025

New Study Reveals Treatment Strategies, Not Species Lineage, Drive Outcomes in Invasive Group A Streptococcus Infections

November 6, 2025

Children’s Blood Methylome Signals Shield Against Islet Autoimmunity

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sweet-Taste Receptor Gene Evolves in Lorisiform Primates

CMTR2 Mutation in Lung Cancer Reveals Therapy Targets

Two Residues Enable Symbiotic Nitrogen Immunity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.