• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Bioadhesive, wirelessly powered implant emitting light to kill cancer cells

Bioengineer by Bioengineer
September 11, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of Dr. Toshinori Fujie, Waseda University

Scientists from Waseda University, the National Defense Medical College, and the Japan Science and Technology Agency developed a new bioadhesive, wirelessly-powered light-emitting device which could better treat cancers in delicate organs.

Conventional photodynamic therapy induces cancer cell death by using photosensitizing agents, which localize in tumors and activate with exposure to a specific wavelength of light. In recent years, low-dose and long-term photodynamic therapy (metronomic photodynamic therapy, mPDT) has shown promise in treating cancers in internal organs. The problem with mPDT is, however, is that because the light intensity is extremely low (1/1000 of the conventional method), the antitumor effect cannot be obtained if the light source shifts even slightly away from the tumor, making the illumination insufficient.

"To address this issue, we have developed a wirelessly-powered optoelectronic device that stably fixes itself onto the inner surface of an animal tissue like a sticker with bioadhesive and elastic nanosheets, enabling a continuous, local light delivery to the tumor," says Toshinori Fujie, associate professor of biomedical engineering at Waseda University. The nanosheets are modified with the mussel adhesive protein-inspired polymer polydopamine, which can stabilize the device onto a wet animal tissue for more than 2 weeks without surgical suturing or medical glue. The light-emitting diode chips in the device are wirelessly powered by near-field-communication technology.

To test its effectiveness, tumor-bearing mice implanted with the device were injected with a photosensitizing agent (photofrin) and exposed to red and green light, approximately 1,000-fold intensity lower than the conventional PDT approaches, for 10 consecutive days. The experiment showed that the tumor growth was significantly reduced overall. Especially under green light, the tumor in some mice was completely eradicated.

Associate Professor Fujie points out, "This device may facilitate treatment for hard-to-detect microtumors and deeply located lesions that are hard to reach with standard phototherapy, without having to worry about the risk of damaging healthy tissues by overheating. Furthermore, because the device does not require surgical suturing, it is suitable for treating cancer near major nerves and blood vessels, as well as for organs that are fragile, that change their shape, or that actively move, such as the brain, liver, and pancreas."

If clinically applied, the device could be beneficial for cancer patients who seek minimally invasive treatment, helping them live longer and improve their quality of life.

###

This study was published online in Nature Biomedical Engineering on July 16, 2018 (GMT).

Reference

Title: Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy
Author: Kento Yamagishi, Izumi Kirino, Isao Takahashi, Hizuru Amano, Shinji Takeoka, Yuji Morimoto & Toshinori Fujie
Published online in Nature Biomedical Engineering on July 16, 2018 (GMT)
DOI: 1038/s41551-018-0261-7

University news on this study

About Waseda University

Waseda University is a leading private, non-profit institution of higher education based in central Tokyo, enrolling over 50,000 students in the 13 undergraduate and 20 graduate schools. Founded in 1882, Waseda cherishes three guiding principles: academic independence, practical innovation and the education of enlightened citizens. Established to mold future leaders, Waseda continues to fulfill this mission, counting among its alumni seven prime ministers and countless other politicians, business leaders, journalists, diplomats, scholars, scientists, actors, writers, athletes and artists. The University is also number one in Japan in international activities, including the number of international students, and has the broadest range of degree programs fully taught in English.

Media Contact

Jasper Lam
[email protected]
@waseda_univ

English: Home

Original Source

https://www.waseda.jp/top/en-news/60952 http://dx.doi.org/10.1038/s41551-018-0261-7

Share12Tweet8Share2ShareShareShare2

Related Posts

Advancing Liver Stiffness Interpretation in Fontan Patients

September 18, 2025

Revolutionary Fusion Technique Predicts NSCLC Recurrence

September 18, 2025

Graz University of Technology Pioneers Lung Cancer Research Using Digital Cell Twin Technology

September 18, 2025

New Study Investigates Cancer Risks in Children Exposed to Medical Imaging

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dynamic Holography via Lithium Niobate Metasurfaces

Massage Therapy Foundation Grants $299,465 for Research at Children’s Hospital of Philadelphia

New Study Uncovers How Brain Cells ‘Crosstalk’ to Communicate

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.