• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, February 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Spying on the virus: Development to increase effectiveness of viral cancer therapy

Bioengineer by Bioengineer
September 11, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: © NUST MISIS

Scientists have learned how to observe the processes of oncolytic viruses in cancer cells in real time. For the first time ever, a group of scientists from NUST MISIS and the University of Calgary (Canada) has managed to apply the technique of intravital microscopy to study the interaction of oncolytic viruses with both tumor and healthy cells of the body. The researchers have presented a technological development that can visually observe how the virus behaves in the tissues of a living organism. The research results have been published in international scientific journal Molecular Therapy Oncolytics.

Today, doctors typically treat cancer surgically, through either radiation or chemotherapy. Therapy with an oncolytic virus – virotherapy or oncolytics – is a fairly new and promising method of cancer treatment based on the creation (including the methods to genetically engineer them) of special modified viruses that target and kill tumor cells. Oncolytic viruses also stimulate anticancer immunity, which leads the tumor to destroy itself.

The body`s immune system must destroy cancer cells immediately to prevent any damage, but cancer cells have special biochemical tricks that allow them to bypass the immune system. That is why cancer sometimes doesn't appear until it's at a critical stage.

On the other hand, antiviral protection doesn't work well in cancer cells (this is due to a defect in the interferon system). As a result, oncolytic viruses can contribute to the death of malignant cells, and &laquoattract the attention» of the immune system so it finally detects the remaining cancer. The mechanism is the following: the cancer cell, affected by the virus, releases signals of danger to the immune system which signals it to recognize the tumor and to direct a special kind of immune cells – T-killers – to fight it.

Although this method is actively being studied in the U.S., Europe, and China, and is considered promising, it hasn't yet received mass application. This is largely due to a lack of understanding how these oncolytic viruses work.

&laquoFor the first time ever, an international team of scientists led by Victor Naumenko, a Candidate of Medical Sciences and a researcher at the NUST MISIS Biomedical Nanomaterials Laboratory, has applied the modern method of intravital microscopy to study the delivery of the virus to a tumor to monitor the dynamics of [the virus's] spread and to simulate the immune system», said Alevtina Chernikova, Rector of NUST MISIS.

&laquoWe have developed a technique that allows us to monitor the virus in a living organism. We have conducted our experiments on the vesicular stomatitis virus, which is completely safe for humans, [as well as being] easy to genetically modify and easy to produce in large quantities. At the same time, most tumor lines are sensitive to this virus. The vesicular stomatitis virus can be marked with dyes that preserve its biological activity and provide visualization in animal tissues through single- and twophoton microscopy», said Victor Naumenko.

Modern microscopic research is mostly about studies of dead tissues and cell samples. However, the intravital microscope allows researchers to observe the processes in living tissues and organs in real time, while the examined animal is under anesthesia, and the high resolution allows them to see individual cells and track their interactions.

Researchers have managed to visualize the dynamic interactions between the virus and the body's cells in the blood, tumors, and internal organs of living mice in an &laquoonline» mode.

&laquoThe method has a sufficient resolution to monitor the in vivo capture and transfer of viral particles by leukocytes, the spread of the infection site in tumors, and the activation of immune processes in the spleen and lymph nodes. We believe that this technology is a powerful new tool for studying and optimizating virotherapy», Naumenko declared.

###

Media Contact

Lyudmila Dozhdikova
[email protected]
7-495-647-2309

http://en.misis.ru/

Related Journal Article

http://dx.doi.org/10.1016/j.omto.2018.06.001

Share12Tweet7Share2ShareShareShare1

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Private Sector Cuts Greenhouse Gases in Africa’s Livestock

Triple Targeting Enhances CXCL16–CXCR6 Antitumor Response

Intensive Short-Duration Exercise Outperforms Standard Care in Treating Panic Disorder

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.