• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Changes in the architecture around cancer cells can fuel their spread

Bioengineer by Bioengineer
September 11, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FINDINGS

UCLA researchers have found that the extracellular matrix, the dense network of proteins and carbohydrates that surround a cell, can influence how cells move within the body by regulating their sugar consumption. The study shows that acute changes in a single component of the extracellular matrix can trigger a very rapid change in the metabolism and migration of the cell.

BACKGROUND

Given its importance in the growth and migration in cancer cells, scientists have intensely studied how glucose metabolism can be regulated in response to a variety of both internal and external cues. But little research has focused on the relationship between metabolism and changes in specific components of the extracellular matrix, which occur both during normal development and in disease progression.

"Our study is different from past studies in that it's showing that acute changes to one component of the extracellular matrix can trigger a very rapid change in the metabolism of the cell," said BJ Sullivan, the study's lead author and graduate student in the lab of Heather Christofk, an associate professor in biological chemistry and molecular and medical pharmacology and director of basic and translational research at the UCLA Jonsson Comprehensive Cancer Center.

METHOD

While analyzing breast tumors from patients and breast cancer cell lines for genes that influence glucose metabolism, the researchers made the surprising discovery that among the genes most tightly associated with a high rate of glucose metabolism was a receptor for a core component of the extracellular matrix, hyaluronan.

Because this receptor tethers the cell to the hyaluronan in the matrix, the finding suggested that changes in the structure or composition of the extracellular matrix might affect metabolism. The researchers confirmed that hypothesis by modulating the levels of hyaluronic acid around the cells and measuring subsequent changes in their rate of glucose metabolism.

IMPACT

The study suggests that scientists might be able to create new treatments for cancer that work by targeting tumors in a way that undercuts the cells' ability to metabolize sugar. Instead of therapies working by directly targeting the cell, it may be possible to alter tumor metabolism by targeting the extracellular matrix.

The finding could lead to a new understanding of many diseases, and might particularly shed new light on how cancer spreads. It suggests that differences in nutrient consumption among the cancer cells within a single tumor mass may align with differences in their tendency to migrate. Those cells with a higher rate of glucose metabolism may be able to fuel the migration to other parts of the body, or metastasis.

"This is really a new paradigm for metabolic regulation," said Christofk. "One of the most significant aspects of these findings is it seems like cells can respond to discrete changes in the matrix by coordinating a metabolic response with a behavioral response. So the increased glucose metabolism that we observe happens when you acutely change the matrix actually fuels the increased migration."

###

AUTHORS

The study's first author is BJ Sullivan, a UCLA graduate student. The senior author is Heather Christofk, an associate professor of biological chemistry and of molecular and medical pharmacology, director of basic and translational research at the UCLA Jonsson Comprehensive Cancer Center and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. Other authors, also of UCLA, are Peter Mullen, Ernst Schmid, Aimee Flores, Milica Momcilovic, Mark Sharpley, David Jelinek, Andrew Whiteley, Matthew Maxwell, Blake Wilde, Utpal Banerjee, Hilary Coller, David Shackelford, Daniel Braas, Thomas de Aguiar Vallim and William Lowry. Donald Ayer of the University of Utah's Huntsman Cancer Institute is also an author.

JOURNAL

The research is published online and will be the cover story in the Sept. 20 issue of the journal Cell.

FUNDING

The research was supported by grants from the by the UCLA Tumor Cell Biology Training Program, the National Institutes of Health, the American Cancer Society, the Jonsson Cancer Center and the UCLA Broad Stem Cell Center's Ablon Scholars Program.

Media Contact

Denise Heady
[email protected]
310-206-2805
@uclahealth

http://www.uclahealth.org/

http://dx.doi.org/10.1016/j.cell.2018.08.017

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionary Fusion Technique Predicts NSCLC Recurrence

September 18, 2025

Graz University of Technology Pioneers Lung Cancer Research Using Digital Cell Twin Technology

September 18, 2025

New Study Investigates Cancer Risks in Children Exposed to Medical Imaging

September 18, 2025

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ALDH2: Key Role in Autophagy and Cell Death

Human Auditory Cortex Integrates Sounds Based on Absolute Time

Miniaturized Chaos-Enhanced Spectrometer Revolutionizes Sensing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.