• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

McMaster study identifies an unexpected cell population key to blood cancer relapse

Bioengineer by Bioengineer
September 11, 2018
in Cancer
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by Kevin Patrick Robbins/McMaster University.

Hamilton, ON (September 10, 2018) – McMaster University researchers have provided evidence of new cancerous cells they have termed cancer regenerating cells, which are responsible for the return of acute myeloid leukemia after remission.

Current therapy is effective at inducing remission in adult patients with acute myeloid leukemia, but most patients later succumb after a relapse. That relapse has been thought to be caused by rare and dormant cancer stem cells that escape chemotherapy.

The study published today in the journal Cancer Cell suggests that leukemia cells change in unique ways in response to the chemotherapy, allowing them to masquerade for a short time so they are able to start disease regeneration.

The research involved combined efforts from both scientists and physicians and spanned more than five years in development. The team took on the challenge of hunting down the rare leukemic cells that remain right after chemotherapy treatment. The surprise was that the most resilient cells left behind after the treatment did not fit the profile of cancer stem cells.

"Many cancer researchers, including our team, have thought it was dormant cancer stem cells that can resist chemotherapy treatment which go on to cause relapse," said Mick Bhatia, lead author and director of the McMaster Stem Cell and Cancer Research Institute.

Bhatia noted that, until now, the initial aftermath immediately after chemotherapy treatment has been largely unexplored, because leftover leukemia cells easily blend into the body and go undetected amid the chaos caused by the therapy itself.

"Chemotherapy is not entirely specific and destroys a lot of other tissues, making the patient's body a difficult place to do the detective work to find cells responsible for relapse," he said.

"It's like trying to find a pen of unknown color or type in an office where a bomb went off. What we were trying to find is what causes the relapse somewhere where a bomb – in this case chemotherapy – had already caused so much collateral damage."

To overcome these hurdles, the team turned to a model where patient leukemic disease is established in laboratory mice, and chemotherapy can be administered to match the way patients are treated in the clinic.

"This design allowed us to zero in on the few human leukemic cells that survived, because we could easily distinguish them from non-diseased mouse cells", said Lili Aslostovar, co-author of the study and a postdoctoral fellow of the McMaster Stem Cell and Cancer Research Institute. "We were finally able to detail what takes place during this transient period before the storm of relapse occurs."

The team's key finding was to identify the point at which the disease retaliates by becoming highly regenerative, setting the stage for eventual relapse. This offered a new roadmap to identify the camouflaged cancer cells that hide out in the bone marrow of leukemia patients shortly after chemotherapy treatment. Importantly, similar patterns of leukemic regeneration could be seen across a spectrum of different patient subtypes, providing a common thread to guide the development of new therapies at the critical time point after chemotherapy.

"This is a major clinical opportunity because this type of leukemia is very diverse and responds differently across patients," said Allison Boyd, co-author of the study and a postdoctoral fellow at the institute.

"It has been a challenge in a clinical setting to find a commonality for therapeutic targeting across the wide array of patients, and these regenerative cells provide that similarity," she said.

The researchers hope that this new understanding of leukemic regeneration will provide physicians the opportunity to introduce additional drugs in combination with chemotherapy treatment. This will take advantage of chemotherapy's benefits while counteracting its shortcomings at the same time by targeting these altered cancer cells, said Bhatia.

"We were impressed that after chemotherapy, the disease seems to get very weak because the cancerous stem cells have been largely eliminated," said Boyd. "We think there are opportunities here because now we have a window where we can kick the cancer while it's down."

Bhatia said the study results support further pursuing this new emerging hypothesis into causes of cancer relapse which is in part related to chemotherapy response, and would likely apply to additional cancers other than leukemia.

"Chemotherapy has increased the number of years cancer patients survive, but if you look at the overall death rates for people with leukemia, they are relatively unchanged," said Bhatia. "The problem is that the tumour comes back. It's the relapse, then, that kills the patients. Our goal is to prevent the relapse altogether."

###

The study was funded by the Canadian Cancer Society, the Canadian Institutes of Health Research, and the Ontario Institute for Cancer Research.

After publication the article will be available at http://www.cell.com/cancer-cell/fulltext/S1535-6108(18)30367-2

For more information:

Veronica McGuire
Media Coordinator
Faculty of Health Sciences
McMaster University
[email protected]
905-525-9140, ext. 22169

Media Contact

Veronica McGuire
[email protected]
905-525-9140 x22169
@mcmasteru

Home

Related Journal Article

http://dx.doi.org/10.1016/j.ccell.2018.08.007

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.