• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Finding Nemo’s genes

Bioengineer by Bioengineer
September 11, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Tane Sinclair-Taylor

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to environmental changes, including climate change.

In a breakthrough study led by the King Abdullah University of Science and Technology (KAUST) and the ARC Centre of Excellence for Coral Reef Studies (Coral CoE), researchers used high-tech sequencing tools to create one of the most complete genetic maps for the orange clownfish, a common reef inhabitant and star of the Disney movie, Finding Nemo.

"This genome provides an essential blueprint for understanding every aspect of the reef fish's biology," said lead author Dr Robert Lehmann of KAUST in Saudi Arabia.

"It contains 26,597 protein coding genes. And like the world's largest jigsaw puzzle, it took patience and time to assemble."

The orange clownfish, Amphiprion percula, is not only the most recognized reef fish on Earth, but also one of the most highly studied.

"This species has been central to ground-breaking research in the ecological, environmental and evolutionary aspects of reef fishes," said co-author Professor Philip Munday of Coral CoE at James Cook University in Australia.

"For example, the clownfish is a model for studying sex change in fishes. It has also helped us understand patterns of larval dispersal in reef fishes and it's the first fish species for which it was demonstrated that predator avoidance behaviour could be impaired by ocean acidification."

The team used state-of-the-art technology to sequence the clownfish's genome. Their genomic and transcriptomic data is now available via the Nemo Genome DB database at http://nemogenome.org.

"The clownfish comprises approximately 939 million nucleotides that needed to be fit together," said co-author Professor Timothy Ravasi of KAUST.

"This is an extremely valuable resource for the research community and will further establish the orange clownfish as an ideal lab subject for genetics and genomic studies."

"This is one of the most complete fish genomes ever produced," said co-author Professor David Miller of Coral CoE at James Cook University.

"Using the PacBio single molecule, real-time sequencing technology, enabled us to achieve a polished result."

###

The paper "Finding Nemo's Genes: A chromosome-scale reference assembly of the genome of the organge clownfish, Amhiprion percula" is published today in the journal Molecular Ecology Resources.

Images available here: https://www.dropbox.com/sh/j0u310s59dmekqi/AAAP7ydtztWviGK6ZDkFudEaa?dl=0

Media Contact

Catherine Naum
[email protected]
042-878-5895
@CoralCoE

http://www.coralcoe.org.au/

Original Source

https://www.coralcoe.org.au/media-releases/finding-nemos-genes http://dx.doi.org/10.1101/278267

Share13Tweet8Share2ShareShareShare2

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ALDH2: Key Role in Autophagy and Cell Death

Human Auditory Cortex Integrates Sounds Based on Absolute Time

Miniaturized Chaos-Enhanced Spectrometer Revolutionizes Sensing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.