• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

VTCRI research team identifies a potential strategy in fight against brain cancer

Bioengineer by Bioengineer
September 11, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists with the Virginia Tech Carilion Research Institute say a gene involved in the body's circadian rhythms is a potential target for therapies to help patients with a deadly form of brain cancer known as glioblastoma.

This discovery, to be published in the journal Scientific Reports on Tuesday, Sept. 11, points to a subtype of a particular gene that apparently is enabling the survival of cancer cells, although it is more commonly associated with circadian rhythms — the body's 24-hour biological clock.

"The world is desperately seeking new treatments for glioblastoma and no one has ever before pointed to this gene as a target upon which to base therapies," said Zhi Sheng, an assistant professor at the Virginia Tech Carilion Research Institute, whose team pinpointed the gene from 20 suspects it had previously identified.

"We have found that inhibiting this gene may inhibit cancer stem cells from renewing themselves and differentiating into glioblastoma cells, which we suspect may be a hallmark of this very persistent cancer," said Sheng, who is also an assistant professor of Internal Medicine at the Virginia Tech Carilion School of Medicine. "More research is needed before a treatment can be designed, but our early, basic science results are promising."

New therapies for glioblastoma patients are desperately needed, according to Sheng, who led the study.

Most patients do not live more than about 15 months after diagnosis. About 90 percent of patients who live longer than two years develop recurrent tumors, for which an additional brain surgery is often not a treatment option. The disease, which accounts for almost half of all brain cancers, recently claimed the life of U.S. Sen. John McCain.

Sheng says the cancer can recur if only a few hundred glioblastoma stem cells survive after surgery, radiation therapy, and chemotherapy.

However, in their experiments, carried out in cell cultures and in a laboratory mouse model of glioblastoma as described in Scientific Reports, the researchers determined when an enzyme produced by a member of the casein kinase 1 gene family is blocked, the proliferation of glioblastoma stem cells stops and tumor formation in mice is inhibited.

The researchers found evidence to show the enzyme is regulating the glioblastoma stem cells effectiveness at self-renewal, rather than differentiation.

"Blocking this gene effectively killed cancer stem cells," Sheng said.

Sheng and his colleagues also evaluated two commercially available drugs that block casein kinase 1 gene from activating circadian rhythms, with one showing some potential for further investigation as a chemical inhibitor of glioblastoma stem cells.

###

Researchers involved in the study included Debbie Kelly, an associate professor at the Virginia Tech Carilion Research Institute, who is a leading researcher in structural oncology.

Robin Varghese, a student in Sheng's lab who received his doctoral degree at Virginia Tech and went on to become an assistant professor for biomedical sciences at the Edward Via College of Osteopathic Medicine, was the study's first author. Co-first authors are Sarah Young and Lily Pham, recent graduates from the Virginia Tech Carilion School of Medicine; Yanping Liang, a research associate with the Virginia Tech Carilion Research Institute; and Kevin Pridham, a postdoctoral associate at the Virginia Tech Carilion Research Institute and a recent graduate of the Virginia Tech Translational Biology, Medicine, and Health Ph.D. program.

Additional researchers include Sujuan Guo and Susan Murphy, senior research associates of the Virginia Tech Carilion Research Institute.

The work was supported by the Virginia Tech Carilion Research Institute and by a mentorship grant from the Virginia Tech Carilion School of Medicine.

Media Contact

John Pastor
[email protected]
540-526-2222
@vtnews

http://www.vtnews.vt.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.