• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Getting to the root of plant evolution

Bioengineer by Bioengineer
August 22, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Despite plants and vegetation being key to the Earth's ecosystem, little is known about the origin of their roots. However in new research, published in Nature, Oxford University scientists describe a transitional root fossils from the earliest land ecosystem that sheds light on how roots have evolved.

The findings suggest that plant roots have evolved more than once, and that the characteristics of roots developed in a step-wise manner – with the central root organ evolving first. And the root cap subsequently coming later.

Dr Sandy Hetherington and Professor Liam Dolan – both of Oxford's Department of Plant Sciences and Magdalen College Oxford, conducted a microscopic study of the oldest known plant ecosystem – the 407 million-year-old Rhynie chert.

Dr Hetherington said: 'The level of preservation in the Rhynie chert is truly remarkable – it never ceases to amaze me that I am able to examine the cellular organisation of plants that were growing 407 million years ago. It provides an exceptional window into life on the terrestrial surface at that time.'

The defining feature of modern-day plant roots is the meristem — a self-renewing structure that is covered by a cap at its apex. Root meristems are hard to spot in the fragmentary fossil record, which can make it challenging to unearth the evolutionary origin of roots.

The authors found evidence of root meristems belonging to the lycopsid plant Asteroxylon mackiei. Lycopsids – commonly known as club mosses, are vascular plants (those with tissues that internally move resources) whose lineage branched off early, before the other higher plants (the euphyllophytes).

The team were able to build a 3D reconstruction of the fossil meristem.

The fossil analysis reveals that the meristems of A. mackiei lack both root hairs and caps — they are covered instead by a continuous layer of surface tissue. This structure makes these roots unique among the vascular plants.

The paper's conclusion suggests that these roots are a transitional step towards modern-style, rooted vascular plants. The findings support the idea that, as this cap-less transitional structure appears in a plant that is already a lycopsid, roots with caps evolved separately in lycopsids and euphyllophytes from their common, root-less ancestors.

Discussing plans to expand on this work, Professor Dolan said: 'Our discovery suggests that plant organs were built up step-by-step during the course of plant evolution.

'The evolution of roots was a critical time in Earth's history and resulted in a dramatic reduction of atmospheric carbon. Now that we know that roots evolved in a step by step manner, we can go back to ancient rocks looking for structures that are missing "parts" that are present in extant roots.

'I really want to find out where root caps came from. They seemed to have appeared out of thin air. They are very important in extant roots; the root cap is important to protect the root as it pushes through the soil and it is the site where roots detect gravity. How did these ancient roots manage without a cap to provide these functions?'

###

Notes to editors:

Images (with credit details and captions) are available to download here: https://www.dropbox.com/sh/bl2o5k2i17qpc66/AAA_dCgS_5btYRHivaeJaLnXa?dl=0

https://www.dropbox.com/home/Asteroxylon%20Press%20Release

The full paper will be available here: DOI: 10.1038/s41586-018-0445-z

The research was supported by grants from Magdalen College, University of Oxford, the European Research Council and the European Commission.

Media Contact

Lanisha Butterfield
[email protected]
01-865-280-531
@UniofOxford

http://www.ox.ac.uk/

http://dx.doi.org/10.1038/s41586-018-0445-z

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.