• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

URI chemistry professor develops contaminant detection technique for heparin

Bioengineer by Bioengineer
August 17, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

KINGSTON, R.I. – Aug. 16, 2018 – In 2008, a contaminant eluded the quality safeguards in the pharmaceutical industry and infiltrated a large portion of the supply of the popular blood thinner heparin, sickening hundreds and killing about 100 in the U.S.

It took a team of researchers led by the U.S. Food and Drug Administration to confirm the contaminant, a toxin structurally similar to heparin that was traced to a Chinese supplier. But detection of the impurity required "a tremendous effort by heavy hitters in the chemistry world," said Jason Dwyer, associate professor of chemistry at the University of Rhode Island.

After nearly eight years of research, Dwyer has developed a simpler and quicker method for detecting the impurity in heparin, along with creating a process that could have wider benefits. His research was unveiled today in the prestigious online journal Nature Communications, part of the suite of journals from the publisher of Nature.

"There are tests that are much more sophisticated and expensive to detect the impurity," said Dwyer, of Providence, R.I. "What we were able to do is – in a very inexpensive and rapid fashion – fingerprint heparin and tell when there is a contaminant in it."

The research, "Surveying Silicon Nitride Nanopores for Glycomics and Heparin Quality Assurance," could also be used to analyze the entire class of molecules to which heparin belongs with broad use in biomedical diagnostics, pharmaceuticals and environmental sensing. Dwyer's wider studies of sugars were bolstered in July by a $318,000 grant from the National Science Foundation.

For example, Dwyer said, the new detection technique could serve as a quality assurance tool across the pharmaceutical industry, especially with an increased push to develop more sugar-based drugs, such as heparin. "Sugars are incredibly important," said Dwyer, whose research in the past has garnered publication in the high-profile journals Nature and Science. "They're how bacteria communicate with each other. They're how we're going to be designing a lot of new drugs. So we need new tools to analyze sugars."

To develop the new detection technique, Dwyer turned to a sensing method proven in the sequencing of DNA and proteins. The sensor consists of a hole, or nanopore, less than a thousandth the thickness of a human hair, sitting on a membrane that is even thinner, and tests substances at the smallest detectable level – a single molecule.

While the sensor, a solid-state silicon nitride nanopore, worked well for DNA, it had to be retooled for sugar molecules, which are far more complex, said Dwyer, whose group was one of the first to focus on sugars.

Starting in 2010, the project developed along with other work by Dwyer's team. It took years to fabricate and fine-tune devices, refine the nanopore and prevent the opening from clogging. "A fair number of students have worked on this project over the years," Dwyer said. "We have not relented. We butted our heads against the wall for a period of time and we realized we needed to do a fair amount of fundamental work before we could get to the point of detecting."

One unexpected problem was solved by Buddini Karawdeniya, lead author of the paper who completed her doctorate in chemistry at URI in the spring. When she attempted to run sugar molecules through the nanopore, they went backwards. "In 1996, people figured out how DNA could be sensed with a nanopore," Dwyer said. "There were some oddities but it worked the way it was expected. Sugars right off the bat did not act as expected. So Buddini had to look at what had been done for 20 years, but know she had to start over at some level."

With the 2008 crisis, researchers had managed to identify and detect the oversulfated chondroitin sulfate contaminant, which was nearly identical to the heparin. Using the fine-tuned nanopore, Dwyer's research looked at both samples, determined that the signals they generated were 99-percent identical, and devised analysis techniques to use the 1-percent difference to reliably detect the impurity.

"The test we came up with takes about 20 minutes," he said, "and works at clinically relevant concentrations."

The goal is to make detection of the impurity even quicker, down to minutes and seconds. At the same time, the device will have to be adapted for a commercial user who may lack the expertise of a researcher in a technology development lab. Also, the tool would have to perform accurately in a less-controlled environment.

"This is where research starts to transition into development, and we start to refine the conditions and the devices even more," Dwyer said. "Often discovery is the easiest part. Refining it for the end user takes time."

The nanopore that came out of the heparin research was designed with that in mind. It uses technology similar to that found in nearly every piece of consumer electronics, said Dwyer, so there is already an industry ready to produce the sensors on a large scale.

"We always try to think about the consumer market," he said. "What we do in the lab is one thing — and it is a vital thing — but how do we translate it into the real world?"

###

This material is based upon work supported by the National Science Foundation under Grant No. CBET-1150085. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Media Contact

Tony Laroche
[email protected]
401-874-2116

The University of Rhode Island

https://today.uri.edu/news/uri-chemistry-professor-develops-new-contaminant-detection-technique-for-blood-thinner-heparin/

Share12Tweet8Share2ShareShareShare2

Related Posts

Centella asiatica juice reduces IL-1β inflammation pathways

Centella asiatica juice reduces IL-1β inflammation pathways

November 13, 2025
Xiang Pigs Show Genetic Links to Wrinkled Skin

Xiang Pigs Show Genetic Links to Wrinkled Skin

November 13, 2025

Optimizing Melanin Production from Endophytic Pseudomonas

November 13, 2025

Newly Discovered Predatory “Warrior” Resembled Early Crocodiles and Roamed Before the Dawn of Dinosaurs

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Eric Nestler Honored with the UNIGE Synapsy Prize 2025

Centella asiatica juice reduces IL-1β inflammation pathways

Controlling Pyramidal Nitrogen Chirality Asymmetrically

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.