• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Stress hormone is key factor in failure of immune system to prevent leukemia

Bioengineer by Bioengineer
August 15, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The human stress hormone cortisol has been identified by scientists at the University of Kent as a key factor when the immune system fails to prevent leukemia taking hold.

A team led by Dr Vadim Sumbayev, of the University's Medway School of Pharmacy, found for the first time that blood/bone marrow cancer – acute myeloid leukemia (AML) – cells evade the anti-cancer activity of the human immune system by employing the human hormone cortisol.

The study of the causes of AML – the most severe blood/bone marrow cancer – demonstrated that AML cells employ a unique pathway to progress the disease, using functional systems of the human body to both support their survival and also reduce the anticancer activities of immune cells.

They do this by using cortisol to force the release of a protein, latrophilin 1. This in turn causes the secretion of another protein, galectin-9, which suppresses the body's natural anti-cancer immune mechanism.

Dr Sumbayev's team, working with researchers from two German universities and the UK's Diamond Light Source facility, found that although healthy human white blood cells are not affected by cortisol they become capable of releasing latrophilin 1 when malignant transformation takes place.

Malignant AML cells then use cortisol to increase the release of latrophilin 1 so that they can use it to avoid the immune system.

The study concluded that galectin-9, as well as a natural binding partner of latrophilin 1 – known as FLRT3 – which are both present in human blood plasma, are the most promising targets for future anti-AML immune therapy.

Dr Sumbayev said: 'For the first time, we can identify a possible future pathway to develop an effective new therapy using the body's natural immune mechanisms. We have discovered a new fundamental biochemical mechanism within the human body that allows AML cells to employ physiological systems to survive and escape immune attack.'

###

The study, entitled Cortisol facilitates the immune escape of human acute myeloid leukemia cells by inducing latrophilin 1 expression (Svetlana Sakhnevych, Inna Yasinska, Alison Bratt, Ouafa Benlaouer, Isabel Gonçalves Silva, Yuri Ushkaryov, Vadim Sumbayev, all Medway School of Pharmacy, universities of Kent and Greenwich; Rohannah Hussain, Giuliano Siligardi, Diamond Light Source; Walter Fiedler, Jasmin Wellbrock, Hubertus Wald University; Bernhard Gibbs, University of Oldenburg) is published in the journal Cellular and Molecular Immunology. See: https://www.nature.com/articles/s41423-018-0053-8

For more information or interview requests contact Martin Herrema at the University of Kent Press Office.

Tel: 01227 816768
Email: [email protected]

News releases can also be found at http://www.kent.ac.uk/news

University of Kent on Twitter: http://twitter.com/UniKent

Notes to editor

Established in 1965, the University of Kent – the UK's European university – now has almost 20,000 students across campuses or study centres at Canterbury, Medway, Tonbridge, Brussels, Paris, Athens and Rome.

It has been ranked 22nd in the Guardian University Guide 2018 and in June 2017 was awarded a gold rating, the highest, in the UK Government's Teaching Excellence Framework (TEF).

In the Times Higher Education (THE) World University Rankings 2015-16, it is in the top 10% of the world's leading universities for international outlook and 66th in its table of the most international universities in the world. The THE also ranked the University as 20th in its 'Table of Tables' 2016.

Kent is ranked 17th in the UK for research intensity (REF 2014). It has world-leading research in all subjects and 97% of its research is deemed by the REF to be of international quality.

In the National Student Survey 2016, Kent achieved the fourth highest score for overall student satisfaction, out of all publicly funded, multi-faculty universities.

Along with the universities of East Anglia and Essex, Kent is a member of the Eastern Arc Research Consortium (http://www.kent.ac.uk/about/partnerships/eastern-arc.html).

The University is worth £0.7 billion to the economy of the south east and supports more than 7,800 jobs in the region. Student off-campus spend contributes £293.3m and 2,532 full-time-equivalent jobs to those totals.

Kent has received two Queen's Anniversary prizes for Higher and Further Education.

Media Contact

Martin Herrema
[email protected]
@UniKent

http://www.kent.ac.uk

http://dx.doi.org/10.1038/s41423-018-0053-8

Share12Tweet7Share2ShareShareShare1

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.