• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Key aspects of human cell aging reversed by new compounds

Bioengineer by Bioengineer
August 7, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Eva Latorre

Key aspects of the ageing of human cells can be reversed by new compounds developed at the University of Exeter, research shows.

In a laboratory study of endothelial cells – which line the inside of blood vessels – researchers tested compounds designed to target mitochondria (the "power stations" of cells).

In the samples used in the study, the number of senescent cells (older cells that have deteriorated and stopped dividing) was reduced by up to 50%. The Exeter team also identified two splicing factors (a component of cells) that play a key role in when and how endothelial cells become senescent.

The findings raise the possibility of future treatments not only for blood vessels – which become stiffer as they age, raising the risk of problems including heart attacks and strokes – but also for other cells.

"As human bodies age, they accumulate old (senescent) cells that do not function as well as younger cells," said Professor Lorna Harries, of the University of Exeter Medical School.

"This is not just an effect of ageing – it's a reason why we age.

"The compounds developed at Exeter have the potential to tweak the mechanisms by which this ageing of cells happens.

"We used to think age-related diseases like cancer, dementia and diabetes each had a unique cause, but they actually track back to one or two common mechanisms.

"This research focuses on one of these mechanisms, and the findings with our compounds have potentially opened up the way for new therapeutic approaches in the future.

"This may well be the basis for a new generation of anti-degenerative drugs."

Professor Harries said the goal was to help people stay healthier for longer. She added: "This is about health span and quality of life, rather than merely extending lifespan."

In a paper published last year, the team demonstrated a new way to rejuvenate old cells in the laboratory.

However, the new research looked at precisely targeting and rejuvenating mitochondria in old cells.

Each one of our genes is capable of making more than one product, and splicing factors are the genes that make the decision about which of these products are made.

In this new work, using novel chemicals, the researchers were able to very specifically target two splicing factors (SRSF2 or HNRNPD) that play a key role in determining how and why our cells change with advancing age.

"Nearly half of the aged cells we tested showed signs of rejuvenating into young cell models," said Professor Harries.

The researchers tested three different compounds, all developed at the University of Exeter, and found each produced a 40-50% drop in the number of senescent blood vessel cells.

The compounds in question – AP39, AP123 and RT01 – have been designed by the Exeter team to selectively deliver minute quantities of the gas hydrogen sulfide to the mitochondria in cells and help the old or damaged cells to generate the 'energy' needed for survival and to reduce senescence.

"Our compounds provide mitochondria in cells with an alternative fuel to help them function properly," said Professor Matt Whiteman, also from the University of Exeter.

"Many disease states can essentially be viewed as accelerated ageing, and keeping mitochondria healthy helps either prevent or, in many cases using animal models, reverse this.

"Our current study shows that splicing factors play a key role in determining how our compounds work."

The research was funded by Dunhill Medical Trust and the Medical Research Council.

The paper, published in the journal Aging, is entitled: "Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2."

###

Media Contact

Alex Morrison
[email protected]
44-013-927-24828
@uniofexeter

http://www.exeter.ac.uk

Related Journal Article

http://dx.doi.org/10.18632/aging.101500

Share13Tweet7Share2ShareShareShare1

Related Posts

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025
blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting Lipid Metabolism to Enhance Antitumor Immunity

Triple Wavefront Modulation Enables Advanced Multi-Depth XR Vision

Uncovering Gaps in Rehab for Hospitalized Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.