• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Rewriting our understanding of gastric tumors

Bioengineer by Bioengineer
July 26, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The immune system can be an important ally in the fight against cancer. A study from McGill scientists published today in Science suggests that the reverse may also be true – that abnormal inflammation triggered by the immune system may underlie the development of stomach tumours in patients with a hereditary cancer syndrome known as Peutz-Jeghers Syndrome (PJS). The findings are likely to prompt a re-thinking of how gastric tumours form in patients with this syndrome and in others with gastrointestinal cancers. They should also open the door to potential new treatments based on targeting inflammation rather than tumour cells.

A rare, hereditary cancer syndrome

Peutz-Jeghers Syndrome (PJS) is a rare genetic disorder that affects approximately 1 in 150,000 people worldwide. PJS is caused by a mutant, inactive version of a gene (STK11/LKB1) that acts as a tumour suppressor and regulator of cell growth, metabolism, survival and polarity (the way the different elements in the cell are organized). Initial signs of the disease are the development of dark blue or brown freckles around people's mouths, eyes, and nostrils. Patients also develop benign polyps – masses of cells that form on the inside lining of their stomach and their digestive tract.

By the age of 65, those with the syndrome have a greater than 90 percent chance of developing cancer, including pancreatic, stomach, ovarian, cervical, colon or breast cancer. There is currently no cure for PJS. Patients are monitored for cancer development and often require surgery to remove polyps to prevent intestinal blockage and bleeding.

Researchers looking for a cure for PJS have long focused on the role that the STK11 gene plays in the epithelial cells of the gastrointestinal tract where polyps, and eventually tumours, form. But a serendipitous discovery in mice led McGill-based researchers to turn their attention in a completely different direction – the immune system.

A new focus on the immune system

Dr. Julianna Blagih, who was studying the role of STK11/LKB1 in immune cells as part of her Ph.D. thesis at McGill, observed that mice with disruption of the STK11 gene only in T cells – soldiers of the immune system that protect our bodies from infection – developed gastrointestinal tumours similar to those found in people with PJS. This observation led Dr. Blagih and her Ph.D. supervisor, Dr. Russell Jones, to explore how immune cells may contribute to development of the disease.

"This is a great example of how a random discovery in fundamental science in the lab can lead to new ideas about how diseases are caused, and potentially also to new treatments," said Dr. Jones, corresponding author of the study and Associate Professor in the Department of Physiology and the Goodman Cancer Research Centre at McGill. "When we investigated further, we confirmed that these were not simply random results and that the mice with T cells with these mutations developed inflammation in their gastrointestinal tract and polyps similar to those in PJS patients."

Moreover, Dr. Maya Poffenberger, the lead author and a member of Dr. Jones' research team, discovered that telltale signs of inflammation were found in polyps from human PJS patients. She also found that polyp development could be reduced in genetically-susceptible mice when they were administered medication that interrupted specific inflammatory pathways.

Changing paradigms for Peutz Jeghers Syndrome

Dr. Jones adds, "Basically, our work changes the way we have been thinking about this disease, with our focus now on understanding how the immune system contributes to polyp development. We hope that our discovery will lead to new treatments for PJS patients and others with gastrointestinal cancers. We're pretty excited about it."

Dr. Jones' next step is to work with mouse models and to continue collaborations with colleagues such as George Zogopoulos and William Foulkes at the McGill University Health Centre (MUHC) to study in patients the role of inflammation in the disease.

###

About the Goodman Cancer Research Centre

The Goodman Cancer Research Centre (GCRC), located within McGill University's Life Sciences Complex, is a state of the art hub for groundbreaking cancer research that attracts and retains top scientists from around the world. Originally established in 1978 as the McGill Cancer Centre, the Centre leads scientific advances that enable us to investigate cancer at a genomic, cellular and molecular level, and understand how cancer progresses, spreads and resists therapies. The Centre currently comprises 27 dedicated research teams with cutting-edge technology platforms, research and support staff and over 200 trainees. Research activities at the GCRC represent a first line of defense in the fight against cancer, with focus on fundamental research to understand why cancers fail to respond to treatment and translating findings into new targets and therapies.

Media Contact

Justin Dupuis
[email protected]
514-398-6751
@McGillU

http://www.mcgill.ca

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.