• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Next generation ALS drug silences inherited form of the disease in animal models

Bioengineer by Bioengineer
July 25, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of NIH/NINDS.

NIH-funded researchers delayed signs of amyotrophic lateral sclerosis (ALS) in rodents by injecting them with a second-generation drug designed to silence the gene, superoxide dismutase 1 (SOD1). The results, published in the Journal of Clinical Investigation, suggest the newer version of the drug may be effective at treating an inherited form of the disease caused by mutations in SOD1. Currently, the drug is being tested in an ALS clinical trial (NCT02623699).

ALS destroys motor neurons responsible for activating muscles, causing patients to rapidly lose muscle strength and their ability to speak, swallow, move, and breathe. Most die within 3-5 years of symptom onset. Previous studies suggested that a gene therapy drug, called an antisense oligonucleotide, could be used to treat a form of ALS caused by mutations in the gene SOD1. These drugs turned off SOD1 by latching onto versions the gene encoded in messenger RNA (mRNA), tagging them for disposal and preventing SOD1 protein production.

Using rats and mice genetically modified to carry normal or disease-mutant versions of human SOD1, a team of researchers led by Timothy M. Miller, M.D., Ph.D., Washington University, St. Louis, MO, discovered that newer versions of the drug may be more effective at treating ALS than the earlier one that had been tested in a phase 1 clinical trial. For instance, injections of the newer versions were more efficient at reducing normal, human SOD1 mRNA levels in rats and mice and they helped rats, genetically modified to carry a disease-causing mutation in SOD1, live much longer than previous versions of the drug. Injections of the new drugs also delayed the age at which mice carrying a disease-mutant SOD1 gene had trouble balancing on a rotating rod and appeared to prevent muscle weakness and loss of connections between nerves and muscles, suggesting it could treat the muscle activation problems caused by ALS. These and other results were the basis for a current phase 1 clinical trial testing the next generation drug in ALS patients (NCT02623699).

###

Article:

Campbell et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. The Journal of Clinical Investigation, July 16, 2018 DOI: 10.1172/JCI99081

This study was supported by grants from NINDS (NS078398, NS084970). Ionis Pharmaceuticals and Biogen supplied the antisense oligonucleotides and were full participants in the study.

For more information:

http://www.ninds.nih.gov

http://www.ninds.nih.gov/Disorders/All-Disorders/Amyotrophic-Lateral-Sclerosis-ALS-Information-Page NCT02623699

About NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

Media Contact

Christopher G. Thomas
[email protected]
301-496-5751
@NINDSnews

http://www.ninds.nih.gov

Original Source

https://www.ninds.nih.gov/News-Events/News-and-Press-Releases/Press-Releases/Next-generation-ALS-drug-silences-inherited-form http://dx.doi.org/10.1172/JCI99081

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.