• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Protecting ribosome genes to prevent aging

Bioengineer by Bioengineer
July 16, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Silvana Paredes

Aging is a process of gradual deterioration from exposure to time and the elements; this process begins with deterioration deep inside every cell. Researchers from Stanford University and the VA Palo Alto Health Care System (VAPAHCS) have identified a protein that guards cells against senescence – aging-related problems – by protecting a particularly vulnerable set of genes. The study is published in the July 13 issue of the Journal of Biological Chemistry.

The genes that encode components of the ribosome – the protein-making machine of the cell – are abundant and constantly in use. Most organisms, including humans, have many copies of ribosomal genes (collectively called ribosomal DNA, or rDNA), some of which are kept silent as backups in case the active copies of ribosomal genes are damaged. This is important because rDNA is essential but unstable – prone to mutation and rearrangement.

"Ribosomal DNA is one of the major hotspots for instability in the genome," said Silvana Paredes, the research scientist who led the study.

Working in Katrin Chua's laboratory, which is jointly affiliated with Stanford and the Geriatric Research Education and Clinical Center at the VAPAHCS, Paredes examined the relationship between aging, rDNA, and a protein called SIRT7. SIRT7 helps modify the proteins that DNA winds around, which affects whether genes are turned on or off. Paredes found that SIRT7 was important for keeping parts of the rDNA turned off.

This function turned out to be crucial for preventing aging-related deterioration in the cell. When SIRT7 was removed, the rDNA genes became damaged. The cells stopped dividing and exhibited other symptoms of damage and age. Such senescent cells accumulate in tissues in aging-related conditions as diverse as cancer, diabetes, heart disease, arthritis, and neurodegeneration; studies in mice have suggested that removing senescent cells can prevent some of these conditions. Identifying SIRT7 as a protein that keeps cells healthy could therefore lead to therapies that prevent cellular senescence.

"By identifying rDNA instability as an underlying trigger of senescence of human cells and demonstrating the central role of SIRT7 in protecting against this process, our studies not only provide important insights into basic mechanisms of aging, but also identify potential molecular targets for aging-related disease processes," Chua said.

###

The study was funded by the NIH National Institute of Aging, the Department of Veterans' Affairs and the Glenn Foundation for Medical Research.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit http://www.asbmb.org.

Media Contact

Sasha Mushegian
[email protected]
@asbmb

http://www.asbmb.org

Related Journal Article

http://dx.doi.org/10.1074/jbc.AC118.003325

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.