• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Machine learning helps to predict the treatment outcomes of schizophrenia

Bioengineer by Bioengineer
July 12, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ross Neitz

Could the diagnosis and treatment of mental health disorders one day be aided through the help of machine learning? New research from the University of Alberta is bringing us closer to that future through a study published in Molecular Psychiatry.

The research was led by Bo Cao at the U of A's Department of Psychiatry, with the collaboration of Xiang Yang Zhang at the University of Texas Health Science Center at Houston. They used a machine-learning algorithm to examine functional magnetic resonance imaging (MRI) images of both newly diagnosed, previously untreated schizophrenia patients and healthy subjects. By measuring the connections of a brain region called the superior temporal cortex to other regions of the brain, the algorithm successfully identified patients with schizophrenia at 78 per cent accuracy. It also predicted with 82 per cent accuracy whether or not a patient would respond positively to a specific antipsychotic treatment named risperidone.

"This is the first step, but ultimately we hope to find reliable biomarkers that can predict schizophrenia before the symptoms show up," said Cao, an assistant professor of psychiatry at the U of A. "We also want to use machine learning to optimize a patient's treatment plan. It wouldn't replace the doctor. In the future, with the help of machine learning, if the doctor can select the best medicine or procedure for a specific patient at the first visit, it would be a good step forward."

Approximately one in 100 people will be affected by schizophrenia at some point in their lives, a severe and disabling psychiatric disorder that comes with delusions, hallucinations and cognitive impairments. Most patients with schizophrenia develop the symptoms early in life and will struggle with them for decades.

According to Cao, early diagnosis of schizophrenia and many mental disorders is an ongoing challenge. Coming up with the personalized treatment strategy at the first visit with a patient is also a challenge for clinicians. Current treatment of schizophrenia is still often determined by a trial-and-error style. If a drug is not working properly, the patient may suffer prolonged symptoms and side effects, and miss the best time window to get the disease controlled and treated.

Cao hopes to expand the work to include other mental illness such as major depressive and bipolar disorders. While the initial results of schizophrenia diagnosis and treatment are encouraging, Cao says that further validations on large samples will be necessary and more refinement is needed to increase accuracy before the work can be translated into a useful tool in a clinical environment.

"It will be a joint effort of the patients, psychiatrists, neuroscientists, computer scientists and researchers in other disciplines to build better tools for precise mental health," said Cao. "We have a Computational Psychiatry group at U of A with a team of excellent clinicians and scientists to work collaboratively on this challenging problem."

###

The study was funded by the Brain and Behavior Research Foundation.

Cao's paper "Treatment response prediction and individualized identification of first-episode drug-naïve schizophrenia using brain functional connectivity" was published in Molecular Psychiatry on June 19, 2018.

Media Contact

Shelby Soke
[email protected]
403-988-4730
@ualberta_fomd

http://www.med.ualberta.ca

Related Journal Article

http://dx.doi.org/10.1038/s41380-018-0106-5

Share12Tweet7Share2ShareShareShare1

Related Posts

University of Houston Co-Leads $25 Million NIH Grant to Investigate Slowing Childhood Nearsightedness

September 18, 2025

New Study Identifies Top Three Deadliest Risk Factors for Common Liver Disease

September 18, 2025

IU Study Reveals Key Challenges in Identifying Patients’ Social Needs

September 18, 2025

Prophylaxis Outcomes for Haemophilia B: Extended Half-Life Factors

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NRG Oncology PREDICT-RT Study Completes Enrollment, Evaluates Tailored Concurrent Therapy and Radiation for High-Risk Prostate Cancer

IU Scientists Discover Two Protein Targets to Undermine Pancreatic Cancer Defenses

University of Houston Co-Leads $25 Million NIH Grant to Investigate Slowing Childhood Nearsightedness

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.