• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

UVA develops way to create medicines without side effects

Bioengineer by Bioengineer
July 6, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dan Addison | University of Virginia Communications

A new technique for precisely targeting molecules within cells is paving the way for safer medicines that are free of side effects.

Researcher J. Julius Zhu, PhD, of the University of Virginia School of Medicine, and his colleagues have developed a way to manipulate molecules from compartment to compartment within individual cells. Amazingly, the same molecules do different things depending on their location, the researchers determined. By manipulating the molecules, scientists can determine exactly which locations to target, while avoiding locations that would cause harmful side effects.

"The problem with side effects is caused because you just could not distinguish the molecules doing different things in the same cell," Zhu explained. "If you blocked a molecule, you blocked it regardless of what it was doing. And that usually has unwanted side effects. Almost every drug that can treat disease has side effects, either major or minor, but usually they always have something."

More Precise Precision Medicine

Until now, drugs have targeted molecules in a very general way. If a molecule was thought to be harmful, researchers might try to develop a drug to block it entirely. But Zhu's new work highlights the downside of that shotgun approach. A molecule might be causing problems because of what it's doing in one part of the cell, but, at the same time, that same molecule is doing something entirely different in other parts — perhaps something tremendously important. So shutting it down entirely would be like trying to solve the problem of traffic congestion by banning cars.

Now, rather than crudely trying to block a molecule regardless of its many functions, doctors can target a specific molecule doing a specific thing in a specific location. That adds a new level of precision to the concept of precision medicine – medicine tailored exactly to a patient's needs.

Potential Applications

Zhu, of UVA's Department of Pharmacology, thinks the technique will be useful for many different diseases, but especially for cancers and neurological conditions such as autism and Alzheimer's. Those, in particular, will benefit from a better understanding of what molecules at what locations would make good targets, he and his colleagues note in a new paper sharing their technique with other scientists.

The technique will also speed up the development of new treatments by letting researchers more quickly understand what molecules are doing and which should be targeted.

"The idea [behind the technique] is actually very simple," Zhu said. "But it took us a lot of years to make this thing work."

###

Findings Published

Zhu and his team have described the new technique in the scientific journal Neuron. The research team consisted of Lei Zhang, Peng Zhang, Guangfu Wang, Huaye Zhang, Yajun Zhang, Yilin Yu, Mingxu Zhang, Jian Xiao, Piero Crespo, Johannes W. Hell, Li Lin, Richard L. Huganir and Zhu.

The work received financial support from groups in America and abroad, including National Institutes of Health grants NS036715, NS065183, NS089578, NS078792, NS053570, NS091452, NS094980, NS092548 and NS104670.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.

Media Contact

Josh Barney
[email protected]
434-906-8864

http://www.healthsystem.virginia.edu/home.html

Original Source

https://newsroom.uvahealth.com/2018/07/06/safer-drugs/ http://dx.doi.org/10.1016/j.neuron.2018.03.049

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.