• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists found means to inhibit capillary leakage in sepsis

Bioengineer by Bioengineer
June 25, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Laura Hakanpaa / Saharinen Lab.

Increased capillary permeability and subsequent leakage from the capillaries is associated with numerous difficult-to-cure diseases, including acute respiratory distress syndrome (ARDS), severe Dengue fever and malaria, and sepsis.

Currently, there is no effective therapy to inhibit capillary leakage and to maintain vessel stability in these diseases.

The latest research published in the Proceedings of the National Academy of Sciences of USA (PNAS) ,2,3 indicates that a monoclonal antibody targeted against β1-integrin inhibits vascular leakage in a mouse model of sepsis.

Integrins are heterodimeric cell surface receptors that mediate interactions between cells and the surrounding extracellular matrix. β1-integrin is a key molecule in endothelial cells, which form the inner layer of the blood vessel wall. Previously, β1-integrin has been known to regulate blood vessel formation and vessel stability. Scientists have now identified a novel function for β1-integrin in vascular leakage associated with severe inflammation and sepsis.

Principal investigator, Dr. Pipsa Saharinen, at the University of Helsinki and Wihuri Research Institute said:

"We made a remarkable discovery: a molecule that was previously known to mediate vessel stability, behaved in an opposite manner in inflammation, by inducing vessel destabilization and leakage. We found that inflammatory agents induced cell contractility that was mediated via β1-integrin, leading to gap formation between endothelial cells and increased permeability."

ANTIBODY AGAINST β1-INTEGRIN RESOLVES VASCULAR LEAKAGE

The scientists used a mouse model of gram-negative sepsis (also termed endotoxemia), which was induced in mice by a bacterial component (LPS). The scientists found that the antibody against β1-integrin bound to the vascular endothelium, improved the junctions between endothelial cells and decreased vascular leakage in sepsis. In addition, the antibody protected the mice from sepsis-induced heart failure.

The antibody against β1-integrin was effective as a prophylactic treatment, but also as an intervention therapy i.e. when the antibody was administered after the onset of the disease.

"This is important since it mimics more the situation in real life. Sepsis may develop unexpectedly and proceed fast. When the patients arrive at the hospital, the disease may have already progressed. It would be important to have the means to inhibit vessel leakiness and the development of a more severe disease. In our study, the antibody against β1-integrin was effective in inhibiting vascular leak in mice even when it was administered after the onset of the leakage", Dr. Saharinen said.

In sepsis the body's own inflammatory reaction becomes overwhelming. Due to the increased level of numerous inflammatory agents, it has been so far difficult to develop a targeted therapy for sepsis.

"Using endothelial cells in culture, we found that β1-integrin is a key mediator of not only one, but several inflammatory agents that are upregulated in sepsis. Furthermore, we found that a vascular growth factor Angiopoietin-2, which is known to play a role in the pathogenesis of sepsis, regulated β1-integrin signaling in endothelial cells. Although there is still a lot of work to do to, these exciting results could ultimately help us develop an effective treatment to block capillary leak in sepsis", Saharinen concluded.

###

Media Contact

Dr. Pipsa Saharinen
[email protected]
358-504-486-361
@helsinkiuni

http://www.helsinki.fi/university/

Original Source

https://www.helsinki.fi/en/news/health/scientists-found-means-to-inhibit-capillary-leakage-in-sepsis

Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.