• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Smart probe detecting cancer cells may improve survival rates

Bioengineer by Bioengineer
June 25, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new Tel Aviv University study explores a novel smart probe for image-guided surgery that may dramatically improve post-surgical outcomes for cancer patients.

In many kinds of cancers, it is often not the primary malignant tumor, but rather metastasis — the spread of lingering cancer cells to other parts of the body — that kills patients. A multidisciplinary team led by Prof. Ronit Satchi-Fainaro of the Department of Physiology and Pharmacology at TAU's Sackler Faculty of Medicine created a smart probe that, when injected into a patient a few hours prior to surgery to excise a primary tumor, may help surgeons pinpoint where the cancer is situated down to several cancer cells, permitting them to guarantee the removal of more cancer cells than ever before.

"In cases of melanoma and breast cancer, for example, the surgeon may believe he/she has gotten everything — that he/she has excised the entire tumor and left the remaining tissue free of cancer. Even if only a few cells linger after surgery, too few or too small to be detected by MRI or CT, recurrence and metastasis may occur," Prof. Satchi-Fainaro says. "Our new technology can guide the surgeon to completely excise the cancer."

The study was published in Theranostics on June 21, 2018.

Making cancer cells "glow in the dark"

The new technique harnesses near-infrared technology to identify the cancer cells. "The probe is a polymer that connects to a fluorescent tag by a linker. This linker is recognized by an enzyme called cathepsin that is overproduced in many cancer types," says Prof. Satchi-Fainaro. "Cathepsin cleaves the tag from the polymer and turns on its fluorescence at a near-infrared light."

The smart probes may potentially be used to guide the surgeon in real time during tumor excision. The surgeon can also avoid cutting out any "non-glowing" healthy tissue.

The scientists first examined the effect of the probe in the lab on regular healthy skin and mammary tissue, and then on melanoma and breast cancer cells. They subsequently used mouse models of melanoma and breast cancer to perform routine tumor excision surgeries and smart probe-guided surgeries.

"The mice that underwent regular surgery experienced recurrence and metastasis much sooner and more often than those who underwent our smart probe-guided surgery," says Prof. Satchi-Fainaro. "Most importantly, those which experienced the smart probe surgery survived much longer."

Decreasing the need for additional surgery

"The probe may also reduce the need for repeated surgeries in patients with cancer cells that remain in the edges of removed tissue," Prof. Satchi-Fainaro says. "Altogether, this may lead to the improvement of patient survival rates."

"We are currently designing and developing additional unique polymeric Turn-ON probes for the purpose of image-guided surgery. They can be activated by additional analytes such as reactive oxygen species (ROS), which are overproduced in cancer tissues, or by using other chemiluminescent probes. We are always looking at ways to improve sensitivity and selectivity which are paramount to cancer patients' care."

###

The scientists who conducted the research for the study included Rachel Blau, Yana Epshtein and Evgeni Pisarevsky, all students in Prof. Satchi-Fainaro's TAU lab. The research is based on long-term collaboration with Prof. Doron Shabat of TAU's School of Chemistry, Prof. Galia Blum of the Hebrew University in Jerusalem, and clinicians Prof. Zvi Ram and Dr. Rachel Grossman of the Department of Neurosurgery at Tel Aviv Medical Center. This work was supported by the ERC Consolidator Award, the Israeli National Nanotechnology Initiative (INNI), Focal Technology Area (FTA) program: Nanomedicine for Personalized Theranostics, the Leona M. and Harry B. Helmsley Nanotechnology Research Fund, the Israel Science Foundation and the Israel Cancer Association.

American Friends of Tel Aviv University supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. TAU is ranked ninth in the world, and first in Israel, for producing start-up founders of billion-dollar companies, an achievement that surpassed several Ivy League universities. To date, 2,500 US patents have been filed by Tel Aviv University researchers — ranking TAU #1 in Israel, #10 outside of the US and #43 in the world.

Media Contact

George Hunka
[email protected]
212-742-9070
@AFTAUnews

Home

https://www.aftau.org/weblog-medicine–health?&storyid4704=2398&ncs4704=3

Related Journal Article

http://dx.doi.org/10.7150/thno.23853

Share12Tweet7Share2ShareShareShare1

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.