• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

University of Michigan researchers use gene silencing to alleviate common ataxia

Bioengineer by Bioengineer
June 20, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In what researchers are calling a game changer for future ataxia treatments, a new study showed the ability to turn down the disease progression of the most common dominantly inherited ataxia.

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, affects about one in 20,000 people. There's no disease-modifying therapy available, and patients slowly progress to an early death. A single gene mutation causes this neurodegenerative disease, making it an ideal target for a group of University of Michigan researchers.

For this preclinical study published in the Annals of Neurology, University of Michigan researchers employed nucleotide-based gene silencing to target the SCA3 disease gene, ATXN3. They greatly reduced levels of the mutant RNA coded by the gene in a mouse model of the disease without any toxic effects.

"Recent advances in antisense oligonucleotide technology provided us with a great opportunity for therapeutic targeting ," says co-first author Hayley McLoughlin, Ph.D., research investigator in the U-M Department of Neurology. "Although we still don't yet know the exact point of no return for this disease, we know how to turn things down before the disease burden accumulates to the point of detriment."

After two treatments, McLoughlin says the mouse model, which normally replicates similar disease motor phenotypes, is completely rescued. Importantly, it's the first time this animal model has been corrected through any therapy and is substantial proof-of-concept for future human clinical trial preparation.

"These encouraging results move us one step closer to disease-slowing therapy for this fatal disorder," says senior author Henry Paulson, M.D., Ph.D., a U-M professor of neurology and director of the Michigan Alzheimer's Disease Center. "They also offer hope that similar approaches might work for a number of brain diseases caused by the deleterious action of specific disease genes."

Team awarded $2.15M

Next, the U-M team in collaboration with Ionis Pharmaceuticals will pursue final drug development with a new U01 grant from the National Institute of Neurological Disorders and Stroke, at the National Institutes of Health. The U01 CREATE Bio Optimization Track funds researchers' work on potential therapies with an end goal of nominating a clinical candidate.

###

Disclosure: The Annals of Neurology paper was conducted with co-authors from Ionis Pharmaceuticals, and the upcoming grant is another collaboration between the U-M neurology researchers and Ionis. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Media Contact

Haley Otman
[email protected]
734-764-2220
@umichmedicine

http://www.med.umich.edu

http://dx.doi.org/10.1002/ana.25264

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.