• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nation’s largest, most comprehensive indoor chemistry study now underway

Bioengineer by Bioengineer
June 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the United States, as well as in most of the developed world, people spend about 90 percent of their time indoors. In homes, workplaces, schools and every indoor environment, we are impacted by the air we breathe and the surfaces we touch, as well as by the constantly changing influence of the indoor environment around us. A new, unique study will analyze these chemical interactions with the tools used for studying outdoor air pollution with the hope of learning what role they may play in human health.

"HOMEChem is a deep, multifaceted field study into how indoor chemical compounds may interact and transform throughout a normal day of activities like cooking, cleaning and even during family gatherings" says Marina Vance, PhD, principal investigator, assistant professor, Department of Mechanical Engineering and Environmental Engineering Program, University of Colorado Boulder. "We expect to answer important scientific questions on the chemistry of indoor environments in a real-world experimental setting."

The month-long project, called HOMEChem (House Observations of Microbial and Environmental Chemistry), incorporates measurements from more than 15 research groups from 13 universities. Experiments are taking place inside the University of Texas' one-of-a-kind UTest House facility.

"The UTest House is a premanufactured home that has been retrofitted for experimentation," says Atila Novoselac, Ph.D., professor, Department of Civil, Architectural, and Environmental Engineering University of Texas at Austin. "The house is exceptionally flexible but it still took two months to adjust, reconfigure, and build the logistical support for the HOMEChem experiments."

"This is a first-of-its-kind, multidisciplinary field experiment," says Paula Olsiewski, PhD, Chemistry of the Indoor Environments program director, Alfred P. Sloan Foundation. "It's exciting to see engineers, chemists and microbiologists working together on the frontier of scientific inquiry."

The HOMEChem experiment is centered around three science questions:

  • What are the sources of chemical oxidants in the indoor environment, and how are they impacted by changes in light conditions and human activities? Examples of chemical oxidants are hydroxyl radicals (OH), nitrate radicals (NO3-), and ozone (O3), which are very reactive.
  • What are the main sources of organic compounds in the indoor environment? How does the physical and chemical transformation of organic compounds from gaseous state into particulate phase (also known as "secondary organic aerosol") and other chemical compounds present in minute amounts (also known as trace gas species) change in response to human activities
  • What are the sources of indoor reactive nitrogen species, and to what extent is their presence indoors influenced by outdoor pollution?

HOMEChem researchers are from the University of Colorado Boulder; Colorado State University; the University of Texas at Austin; Drexel University; Syracuse University; Indiana University Bloomington; the University of Toronto; the University of California, Berkeley; the University of California, San Diego; the University of Massachusetts; Harvard University; Washington University in St. Louis Engineering; and The College of William & Mary.

Instruments being used during the experiment have been loaned by Handix Scientific, Airmodus, Airboxlab, and the National Institute for Occupational Safety and Health (NIOSH).

"The HOMEChem teams have set up trailers around the UTest House equipped with some of the most sophisticated instruments available, specifically designed to detect oxidants, the vast diversity of volatile organic compounds (VOCs), and particulate matter," says Delphine Farmer, PhD, principal investigator, associate professor, Department of Chemistry, Colorado State University. "Each measurement will provide one piece of the puzzle that describes the chemistry of indoor environments; together, these clues will begin to reveal a picture that can help us better understand this complex chemistry."

###

The HOMEChem field study is funded by a grant from the Alfred P. Sloan Foundation in its Chemistry of Indoor Environments program. To follow the field experiment in real time, follow @IndoorChem and #HOMEChem on Twitter.

Media Contact

Kellen Short
[email protected]
828-719-8842

http://www.sloan.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.