• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Nutritional quality of fish and squid reduced by warm water events

Bioengineer by Bioengineer
June 8, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Gabriel Machovsky-Capuska

Research led by the University of Sydney shows that under warm water events the nutritional balance of fish and squid changes and is of lower quality, while under cold water events it is of higher quality.

Conducted in New Zealand, the research used a highly successful marine predator seabird -the Australasian gannet – as a biological monitor of the marine environment and food sources.

The team combined miniature bird-borne GPS loggers, fish and squid nutritional analysis and nutritional modelling, and quantified colder and warmer water events by comparing the mean sea surface temperature with 10 years of data.

Fish and squid captured by gannets were found to have significantly lower ratio of healthy oils to protein during warm water events (where sea surface temperature was warmer than the 10-year mean) and better nutritional quality during cold water periods (lower than the 10-year mean).

Published in the Journal of Animal Ecology, the research was a collaboration between the Charles Perkins Centre, School of Life and Environment Sciences and School of Mathematics and Statistics at the University of Sydney; James Cook University in Queensland; Massey University in New Zealand; and the Ornithological Society of New Zealand. It forms part of the human-animal interactions and Human Food Chain project nodes at the Charles Perkins Centre.

Lead author Dr Gabriel Machovsky-Capuska, adjunct senior researcher at the University of Sydney's Charles Perkins Centre, said the findings had implications for marine life and its predators, including humans.

"Marine mammals and seabirds such as gannets eat similar foods as humans – namely fish and squid," he explained.

"All capture prey in similar areas, and inevitably all are impacted by nutritional changes to this food source."

Co-author Professor David Raubenheimer, the University of Sydney's Leonard P Ullmann Chair in Nutritional Ecology at the School of Life and Environmental Sciences and Charles Perkins Centre, said the research team devised a novel approach in order to conduct the research.

"Our approach, which we call nutritional landscapes, allows us to associate the nutritional quality of marine resources – otherwise very challenging, as marine life continuously moves – with geographic location, water depth and environmental conditions such as sea surface temperature and chlorophyll levels," Professor Raubenheimer explained.

"These findings underline the importance of linking marine environmental fluctuations with the nutritional quality of fish and squid for human consumption – and provide significant insights for fisheries that are capturing fish for humans to eat."

Dr Machovsky-Capuska said the findings were also revealing for environmental and conservation purposes.

"The work shows that diet and foraging behaviour of marine predators are significantly influenced by warm and cold events," he said.

"During warm water events gannets had to work harder for their food as they expanded their foraging habitat and increased their foraging trip duration, while at the same time consuming prey and diets with lower content of energy-providing oils," he said.

"Our approach can be used to understand and ultimately protect travelling routes for migratory species, and could support the conservation of endangered species in terms of food quality and habitat suitability."

###

Media Contact

Rachel Fergus
[email protected]
61-293-512-261
@SydneyUni_Media

http://www.usyd.edu.au/

Original Source

https://sydney.edu.au/news-opinion/news/2018/06/08/nutritional-quality-of-fish-and-squid-reduced-by-warm-water-peri.html http://dx.doi.org/10.1111/1365-2656.12856

Share13Tweet7Share2ShareShareShare1

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.