• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Probe into farm animals could help treat drug-resistant bacteria

Bioengineer by Bioengineer
May 31, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Growing threats to public health could be addressed by cutting-edge research that reveals how farm animals contribute to the spread of drug-resistant bacteria, a study suggests.

Scientists are calling for new research combining genome analysis with studies that map the spread of infections to reveal how cows, pigs and chickens might play a role in helping drug-resistant bacteria to thrive.

Determining if livestock are the source of such bacteria could inform measures to combat the rise of drug-resistant infections with no effective treatments, researchers say.

Previous research suggests resistant E. coli bacteria – recently classified as a major health threat by the World Health Organization – can be passed directly to humans by livestock.

Limitations in these studies mean however that the role of farm animals in the rise and spread of drug-resistant bacteria remains poorly understood, researchers say.

A team led by scientists at the University of Edinburgh carried out a systematic review of current evidence examining the transfer of resistant E. coli between farm animals and people.

Their findings highlight a need for more robust data and state-of-the-art genome analysis to shed light on how drug-resistant bacteria arise and spread in human and animal populations.

The study, published in the journal Foodborne Pathogens and Disease, involved researchers at the universities of Liverpool and Oxford, and the International Livestock Research Institute in Nairobi, Kenya.

The work was supported by the Medical Research Council, Biotechnology and Biological Science Research Council, Economic and Social Research Council, and Natural Environment Research Council.

Dishon Muloi, a PhD student in the University of Edinburgh's Centre for Population Health Sciences, who led the study, said: "Our study suggests that the current evidence regarding transmission of drug resistance between food animals and humans is limited. Combining state-of-the-art genomic data analysis with epidemiological evidence would help us to better understand the direction and frequency of transmission between the two populations."

Dr Bram van Bunnik, of the University of Edinburgh's Centre for Population Health Sciences, said: "The role of farm animals in the emergence and spread of drug-resistant bacteria to humans is poorly understood and controversial. Similarity or identity of drug-resistant bacteria in the two populations does not, by itself, provide information on the direction of transfer. We need to integrate novel methods on whole genome analysis and epidemiological approaches to better understand the direction and frequency of transmission between these populations to combat antibiotic resistance."

###

Media Contact

Corin Campbell
[email protected]
44-131-650-6382
@edinunimedia

http://www.ed.ac.uk

http://dx.doi.org/10.1089/fpd.2017.2411

Share13Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.