• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The stick insects that survive being eaten by birds

Bioengineer by Bioengineer
May 28, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kobe University

It's commonly assumed that when insects are eaten by birds, they and their unborn young have no chance of survival. However, a team of Japanese researchers hypothesized that the eggs within insect bodies can pass through birds undigested. They tested this hypothesis with stick insects, known for their hard eggs, and found that some eggs are excreted unharmed and successfully hatch. Stick insects cannot travel very far by themselves, so being eaten by birds could even contribute to expanding their habitat.

The research team was led by Associate Professor Kenji Suetsugu (Kobe University Graduate School of Science), Associate Professor Katsuro Ito (Kochi University), and Associate Professor Takeshi Yokoyama (Tokyo University of Agriculture and Technology). The findings were published in the online edition of Ecology on May 28.

Plants cannot move around, so they have developed various ways to distribute their seeds. The most common is seed dispersal by animals, who eat the fruits and excrete the seeds whole. For many birds, insects are also one of their main food sources. If insect eggs can pass through birds unharmed, we could say that insects, just like plants, are using the birds as a means of long-distance transport.

To achieve this, several conditions must be met: the eggs must be strong enough to pass through digestive tracts unharmed, the insect young born from these eggs must be able to fend for themselves, and the eggs must be viable without fertilization. Stick insects fulfil these conditions. The insect eggs are only fertilized just before the eggs are laid, using sperm stored within the seminal vesicle. However, females of many stick insect species are parthenogenic, enabling them to produce viable eggs without fertilization. In addition, like plant seeds, stick insect eggs have a very hard shell. They lay these eggs by scattering them on the surface of the ground, and after hatching the young locate suitable plants for food by themselves.

The research team fed eggs from three species of stick insects to brown-eared bulbul (one of the main bird predators for stick insects). For all three species, between 5 and 20% of the eggs were excreted unharmed. They also confirmed that for one species, eggs retrieved from the bird's excrement successfully hatched. Despite being eaten by birds, the unborn insects survived. Adult stick insects are frequently eaten by birds, and the stomachs of adult female stick insects are always filled with eggs, so this route is a potential way to widen stick insect distribution.

Many plants have evolved eye-catching, nutritious fruit as a strategy to appeal to animals, while stick insects are plain and hard to spot. But even though they do not actively seek to be eaten, for insects with low mobility like stick insects, consumption by birds is one way to expand their habitat. Many relatives of stick insects have dispersed across islands unconnected to the mainland. The ability of animals with low mobility to successfully travel long distances is a topic that puzzled Darwin.

"Our next step is analyzing the genetic structure of stick insects" comments team leader Professor Suetsugu. "Based on this we'd like to investigate whether similar genetic structure of stick insects can be found along birds' migration flight paths, and whether there are genetic similarities between stick insects and plants that rely on birds for seed distribution". These investigations will reveal that the dispersal of stick insect eggs by birds could affect the distribution and gene flow of stick insects.

###

Media Contact

Eleanor Wyllie
[email protected]
@KobeU_Global

http://www.kobe-u.ac.jp/en/

Related Journal Article

http://dx.doi.org/10.1002/ecy.2230

Share13Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.