• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UBC Okanagan researchers develop faster test for cannabis quality

Bioengineer by Bioengineer
May 17, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

With the coming legalization of cannabis in Canada, producers are increasingly looking for quick and accurate means of determining the potency and quality of their products.

Researchers at UBC's Okanagan campus have developed a new method of measuring phytocannabinoids–the primary bioactive molecules in cannabis–that will lead to faster, safer and more accurate information for producers, regulators and consumers alike.

"There is growing demand on testing labs from licensed cannabis growers across the US and Canada who are under pressure to perform potency testing on ever-increasing quantities of product," says Matthew Noestheden, PhD chemistry student under Prof. Wesley Zandberg at UBC's Okanagan campus. "Traditional tests can take upwards of 20 minutes to perform, where we can do it in under seven. It will save a great deal of time and money for producers with enormous greenhouses full of thousands of samples requiring testing."

Noestheden says that not only can he test the substance in record time, but he can also test for a virtually limitless number of phytocannabinoid variants.

"Most people are familiar with THC as the primary bioactive compound in cannabis. But in reality, there are more than 100 different phytocannabinoid variants, many with their own unique biological effects," says Noestheden. "The problem is that it's very difficult to differentiate between them when testing cannabis potency."

The research team overcame the problem by using high-pressure liquid chromatography–an instrument that isolates each phytocannabinoid to measure them independently. They were able to discern the potency of 11 unique phytocannabinoids in cannabis extracts, which is important for determining the safety and authenticity of cannabis products.

"We tested twice as many phytocannabinoids compared to what most labs are testing for now, and more than twice as fast," says Noestheden. "We limited our tests to 11 variants because these were the only ones commercially available at the time. We could just as easily test for 50 or even all 100 variants, including some synthetic cannabinoids that can be added to products to increase potency."

Noestheden says his method was designed to be rolled out in labs around the world. Having worked with Rob O'Brien, president of Supra Research and Development, a cannabis testing lab and industry partner of this study, Noestheden now hopes his new method can be put straight to good use by helping researchers connect variation in phytocannabinoids with the pharmacological effects of various cannabis products.

"It's an elegant solution because any cannabis testing lab with the appropriate instrumentation should be able to adopt the new method with minimal additional investment, making the whole process cheaper and faster."

The study was published in the journal Phytochemical Analysis with funding from MITACS, the University Graduate Fellowship and the Walter C. Sumner Memorial Fellowship.

###

Media Contact

Nathan Skolski
[email protected]
250-807-9926

http://ok.ubc.ca/welcome.html

https://news.ok.ubc.ca/2018/05/17/ubc-okanagan-researchers-develop-faster-test-for-cannabis-quality

Related Journal Article

http://dx.doi.org/10.1002/pca.2761

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025
blank

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

Gene Body Methylation Drives Diversity in Arabidopsis

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Delayed Diagnosis Offers No Harm to Intussusception Success

Evaluating Rohu Fry Transport: Key Water Quality Insights

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.