• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Deadly cancers show early, detectable differences from benign tumors

Bioengineer by Bioengineer
May 14, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DURHAM, N.C. – Do metastatic cancer tumors "break bad" or are they "born bad"?

This question is an essential mystery in cancer early detection and treatment. Lacking a clear answer, patients are given the same aggressive therapies when small, abnormal clusters of cells are discovered early, even though they might well be harmless.

In a study publishing the week of May 14 in the Proceedings of the National Academy of Sciences, a research team co-led by scientists at Duke and the University of Southern California has found that in the colorectal tumors they examined, invasive cancers are born to be bad, and this tendency can potentially be identified at early diagnosis.

"We found evidence that benign and malignant tumors start differently, and that cell movement — an important feature of malignancy — manifests itself very early on during tumor growth," said lead author Marc D. Ryser, Ph.D., postdoctoral fellow in Duke's departments of Surgery and Mathematics.

"By testing screen-detected, small tumors for early cell movement as a sign of malignancy, it might be possible to identify which patients are likely to benefit from aggressive treatment," Ryser said.

Ryser and colleagues built on recent research showing that in a subset of human cancers, many key traits of the final tumor are already imprinted in the genome of the founding cell. As such, they reasoned, invasive tumors would start out with the ability to spread rather than developing that trait over time. That is, they are born to be bad.

The researchers analyzed 19 human colorectal tumors with genome sequencing technology and mathematical simulation models. They found signatures of early abnormal cell movement in the majority of the invasive samples — nine of 15. This propensity is required for tumors to spread, causing them to become deadly. Early abnormal cell movement was not apparent in the four benign tumors the researchers studied.

"The early growth of the final tumor largely depends on the drivers present in the founding cell," the authors wrote.

The study was small and the researchers acknowledged that verification in a larger sample is required, but the finding is a significant step toward establishing a test to distinguish between deadly and harmless growths.

"Thanks to improved screening technologies, we diagnose more and more small tumors," said senior author Darryl Shibata, M.D., professor in the Department of Pathology at Keck School of Medicine of USC. "Because treating a patient aggressively can cause them harm and side-effects, it is important to understand which of the small screen-detected tumors are relatively benign and slowly growing, and which ones are born to be bad."

###

In addition to Ryser and Shibata, study authors include Byung-Hoon Min, and Kimberly Siegmund.

The work received funding support from the National Institutes of Health (CA185016, CA196569, P30CA014089, K99CA207872), the National Science Foundation (DMS 1614838), and the Swiss National Science Foundation (P300P2-154583).

Media Contact

Samiha Khanna
[email protected]
919-419-5069
@DukeHealth

http://dukehealthnews.org

http://dx.doi.org/10.1073/pnas.1716552115

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.