• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Levitation yields better neutron-lifetime measurement

Bioengineer by Bioengineer
May 10, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: LANL

LOS ALAMOS, N.M., May 10, 2018–Being repulsive can have its advantages. In the case of an experiment at Los Alamos National Laboratory's linear accelerator, a repulsive magnetic field and a clever detector system are allowing ultracold neutrons to be levitated so their actual lifetimes can be more accurately measured. For the first time, the measurements are considered accurate enough that potential corrections are not larger than the uncertainties.

"Neutrons, when safely at home inside an atom, are not at risk for blinking out of existence. But on their own, their average lifespan is about 15 minutes," said Los Alamos physicist Steven Clayton, one of the authors of a new paper out today in the journal Science. "This matters in the larger science context because the average lifespan depends on fundamental parameters in the Standard Model of particle physics." A number of methods of containing the particles and measuring their lifespan have been tried over many years–oiled copper bottles, beams of neutrons surrounded by traps, all sorts of clever ways of determining exactly how long before the neutron decays into a proton. But there were always gaps in the timing from each method, which gave scientists doubts about both the Standard Model physics at playand the variations shown in the measurement methods. Now, by levitating polarized, ultracold neutrons above the surface of an asymmetric storage trap, they have been able to prevent the trapped neutrons from interacting with the trap walls, measure the neutrons with increased accuracy, and determine their lifespan without needing such large room for error.

Using an 800 MeV proton beam at the Los Alamos Neutron Science Center (LANSCE) to liberate the bound neutrons and then injecting them into a magnetic trap (closed with fields on the bottom and sides and by gravity on the top,) the team was able to capture a population of neutrons and hold them in place for up to an hour, until a detector was lowered into place. Neutrons whose kinetic energy was too great for the experiment were diverted out of the trap, and the neutrons that had not yet decayed struck the detector paddle's boron layer, where they were reabsorbed into matter and thus detected. Comparing the number of survivors after different storage times yielded the average neutron lifetime.

###

The team working on this, for some 10 years now, included scientists from Los Alamos, Indiana University, Triangle Universities Nuclear Laboratory, North Carolina State University, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, West Point Military Academy, California Institute of Technology, Tennessee Technological University, DePauw University, and the Joint Institute for Nuclear Research, Dubna, Russia.

Publication: Publication: Measurement of the neutron lifetime using an asymmetric magneto- gravitational trap and in situ detection, Science,.

Authors: R. W. Pattie Jr., N. B. Callahan, C. Cude-Woods, E. R. Adamek, L. J. Broussard, S. M. Clayton, S. A. Currie, E. B. Dees, X. Ding, E. M. Enge, D. E. Fellers, W. Fox, K. P. Hickerson, M. A. Hoffbauer, A. T. Holley, A. Komives, C.-Y. Liu, S. W. T. MacDonald, M. Makela, C. L. Morris, J. D. Ortiz, J. Ramsey, D. J. Salvat, A. Saunders, S. J. Seestrom, E. I. Sharapov, S. K. Sjue, Z. Tang, J. Vanderwerp, B. Vogelaar, P. L. Walstrom, Z. Wang, W. Wei, H. L. Weaver, J. W. Wexler, T. L. Womack, A. R. Young, and B. A. Zeck

Funding: This work was supported by the Los Alamos Laboratory Directed Research and Development (LDRD) office, the LDRD Program of Oak Ridge National Laboratory, the National Science Foundation, NIST Precision Measurement Grant, IU Center for Space Time Symmetries, and the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, BWX Technologies, Inc. and URS Corporation for the Department of Energy's National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and global security concerns.

Media Contact

Nancy Ambrosiano
[email protected]
505-667-0471
@LosAlamosNatLab

http://www.lanl.gov

Share12Tweet7Share2ShareShareShare1

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.