• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Tracing the footprints of a tumor: Genomic ‘scars’ allow cancer profiling

Bioengineer by Bioengineer
May 8, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michel Owusu / CeMM

When a cell develops into a tumor, something has gone terribly wrong: the uncontrolled growth, invasion of nearby tissues and finally metastasis are the result of many consecutive DNA mutations. Such an accumulation of demolished genetic material often derives from initial environmental exposures, enzymatic activities or defects in DNA replication or DNA repair mechanisms. Each of those initial mutagenic conditions creates their own pattern of DNA damage called mutational signature. Deciphering them could theoretically allow us to trace back the initial cause of a tumor, profile its properties and help find a therapeutic strategy.

However, reading those mutational signatures in tumor samples is a difficult task, as the large amount of mutations that a patient acquires during its lifetime create a noisy and uncontrolled system – even the best clinical data will, at most, provide only associations. Therefore, the group of Joanna Loizou, Principal Investigator at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, in collaboration with researchers from the Wellcome Trust Sanger Institute, developed an experimental setup to validate the concept of mutational signatures in cell culture.

In special human cell lines, optimized for genome editing, the researchers destroyed nine different genes – one gene per cell line – for DNA repair using CRISPR-Cas9 technology. Subsequently, they cultivated single cells from each of those nine experiments and allowed them to proliferate for one month. Eventually, the scientists analyzed the entirety of mutations that accumulated over this time period in the cell line deriving from the single progenitor that lacks a specific DNA repair gene. With specially developed computational methods, they were able to find the genomic scars that a missing DNA repair gene left in the genome of the affected cells – they were almost identical to mutational signatures found in cancer cells.

"Our results validate mutational signatures across all classes of mutations", Joanna Loizou summarizes the findings. "For the first time, this theoretical concept was confirmed in a highly controlled experimental setup". However, a single gene defect is not restricted to only one mutational signature, Loizou adds: "We found that some defects in DNA repair genes engender multiple mutational signatures of different classes". The converse is also true, as Michel Owusu, PhD Student in Loizou's laboratory and co-first author of the paper explains: "A mutational signature may not necessarily reflect a defect of one gene, as it could also arise through the malfunctioning of another related gene involved in the affected DNA repair mechanism".

The findings of this study not only confirm an analytical principle that describes mutational processes and cancer development, mutational signatures are a direct mechanistic read-out of specific dysfunctions of a cell. Thus, even if the underlying gene defect is unknown, mutational signatures could be used as biomarkers for the molecular characterization of tumors – a new diagnostic tool to improve the precise and personalized treatment of cancer.

###

Attached pictures: 1) Hap1 Cells stained for different DNA damages (yellow = antibody against phosphorilated ATM; red = antibody against 53BP1; a regulator of NHEJ; blue = DAPI = DNA) © Michel Owusu / CeMM;

The study "Validating the concept of mutational signatures with isogenic cell models" was published in Nature Communications 9 on May 1st, 2018. DOI: 10.1038/s41467-018-04052-8.

Authors: Xueqing Zou*, Michel Owusu*, Rebecca Harris, Stephen P. Jackson, Joanna I. Loizou#, Serena Nik-Zainal# (*These authors contributed equally to this work # Corresponding authors)

The study was funded by the Austrian Academy of Sciences, the European Commission (Marie-Curie Career Integration Grant), the Austrian Science Fund FWF and the Wellcome Trust.

Joanna Loizou received her Ph.D. at the University of Manchester and Sussex with Keith Caldecott, and carried out post-doctoral research at the International Agency for Research on Cancer, Lyon, France with Zhao-Qi Wang and Zdenko Herceg and later at the London Research Institute, CRUK, England with Axel Behrens. She joined CeMM in 2011. http://cemm.at/research/groups/joanna-i-loizou-group/

The mission of CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences is to achieve maximum scientific innovation in molecular medicine to improve healthcare. At CeMM, an international and creative team of scientists and medical doctors pursues free-minded basic life science research in a large and vibrant hospital environment of outstanding medical tradition and practice. CeMM's research is based on post-genomic technologies and focuses on societally important diseases, such as immune disorders and infections, cancer and metabolic disorders. CeMM operates in a unique mode of super-cooperation, connecting biology with medicine, experiments with computation, discovery with translation, and science with society and the arts. The goal of CeMM is to pioneer the science that nurtures the precise, personalized, predictive and preventive medicine of the future. CeMM trains a modern blend of biomedical scientists and is located at the campus of the General Hospital and the Medical University of Vienna. http://www.cemm.at

For further information please contact

Mag. Wolfgang Däuble
Media Relations Manager
Phone +43-1/40160-70 057
Fax +43-1/40160-970 000

[email protected]
http://www.cemm.at

CeMM
Research Center for Molecular Medicine
of the Austrian Academy of Sciences
Lazarettgasse 14, AKH BT 25.3
1090 Vienna, Austria

Media Contact

Wolfgang Däuble
[email protected]
0043-140-160-70057
@CeMM_News

http://www.cemm.oeaw.ac.at

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-04052-8

Share13Tweet7Share2ShareShareShare1

Related Posts

Cleveland Clinic Study Finds Bariatric Surgery Offers Superior Long-Term Benefits Over GLP-1 Medications

September 16, 2025

Stem Cell Transplant Promotes Brain Cell Regeneration and Functional Recovery After Stroke in Mice

September 16, 2025

Enhanced Rib Fracture Detection via Post-Mortem Photon CT

September 16, 2025

Updated VasCog-2-WSO Criteria Enhance Diagnosis of Vascular Cognitive Impairment and Dementia

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cleveland Clinic Study Finds Bariatric Surgery Offers Superior Long-Term Benefits Over GLP-1 Medications

Stem Cell Transplant Promotes Brain Cell Regeneration and Functional Recovery After Stroke in Mice

“‘Internal Alarm System’ Activates Immune Defense to Combat Cancer”

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.