• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Transistor fabrication onto curved surface means turn toward better diabetes therapy

Bioengineer by Bioengineer
May 7, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Transparent transistors fabricated onto the sharp curves of a tiny glass tube are paving the way toward a therapeutic advance for the nearly 10 percent of the U.S. population who have diabetes.

The nanotechnology advance by Oregon State University researchers is a key step toward an artificial pancreas: a catheter that can detect blood sugar levels and transmit the info to a wearable, computerized insulin pump.

The work by Greg Herman and Xiaosong Du of the College of Engineering also represents a step toward better medical diagnostic techniques: fully transparent electronics that open the door to combined sensing and imaging technologies.

Earlier Herman and Du had fabricated amperometric glucose sensors onto a flat polymer film that was then wrapped around a catheter tube.

When tested in an animal model, however, the early devices tended to delaminate – the sensors would come apart from the film, or the film would peel off from the catheter.

Researchers addressed that problem by microcontact printing a-IGZO-FET-based sensors – amorphous indium gallium zinc oxide field effect transistor – directly onto glass tubes with a 1-millimeter radius. Traditional patterning technologies like photolithography and e-beam lithography have proved troublesome for highly curved surfaces, but microcontact printing worked well.

"It takes advantage of an elastomeric stamp's ability to conform to curved substrates with minimal distortion of the printed pattern," Herman said. "The adhesion of the film deposition is very good. For it to come off, you'd essentially have to take a file to it. It's much more rugged than what we had before, and the electronic performance is excellent – it's the same as when fabricated on a flat surface using non-printing methods. We used a glass tube in part to show off the device's transparency."

Catheters are metallic or plastic, so unlike a sensor-equipped contact lens Herman has also worked on, transparency isn't necessarily required.

"But the idea is with a catheter, you could start integrating optical fibers that have the a-IGZO-FET sensors on them," he said. "Some types of sensing need an optical response for detection, so if we can integrate an optical response with an electronic signal, we can expand the detection being done. Field effect sensing may increase the functionality and sensing range of optical sensing systems."

Also, transparent field effect sensing can be melded with electrophysical and neural imaging devices and could greatly improve the sensitivity of an endoscope – a device inserted into the body to provide an internal view.

The artificial pancreas aspect of the research is particularly significant to those with Type 1 diabetes, also known as juvenile diabetes. Most of those patients – there are about 3 million in the U.S., with 30,000 new cases diagnosed each year – are already wearing an insulin pump, so adding glucose sensing to the catheter would simplify their lives.

Type 2 diabetics typically self-inject, so they would be better candidates for the sensor-equipped contact lens.

###

The Juvenile Diabetes Research Foundation and the National Science Foundation supported this research. Findings were published in Sensors and Actuators B: Chemical.

Media Contact

Greg Herman
[email protected]
541-737-2496
@oregonstatenews

http://oregonstate.edu/

http://bit.ly/2JWHe7W

Related Journal Article

http://dx.doi.org/10.1016/j.snb.2018.04.087

Share12Tweet7Share2ShareShareShare1

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.