• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study paves way for healthier and more robust eggs

Bioengineer by Bioengineer
April 17, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The results of a study recently published in the prestigious international journal Science Advances have enabled researchers to better understand the role of eggshells in embryo development and hatching.

The objective of the study, conducted by an international research team led by Marc McKee from McGill University in Canada and involving the participation of scientists from the University of Granada (UGR), was to analyse the nanostructure of chicken eggshells. The findings could be used to produce healthier, more robust eggs by providing researchers with the means to genetically select laying hens with specific characteristics.

An eggshell is made up of both organic and inorganic matter that contains calcium carbonate. One of the important findings of the study was that the nanostructure was closely linked to the presence of osteopontin, a protein which is also found in bones.

Eggshell transformation process

Eggshells are strong enough to resist fractures during the incubation period. However, they gradually weaken as the hatching period approaches to make it easier for the chicks to break through the shell. The eggshell weakens as its internal layer dissolves, releasing calcium which, in turn, is needed by the embryo for bone formation. The study found that this process is made possible as a result of the changes that occur in the eggshell nanostructure during the incubation period.

Implications for food safety

Furthermore, the researchers were able to recreate similar nanostructures to those they discovered in the eggshells by using proteins, specifically by adding osteopontin to mineral crystals grown in the lab. The team add that: "A better understanding of the role of proteins in the calcification process that strengthens the eggshell structure could have significant implications for food safety." According to the team, which includes Alejandro B. Rodríguez Navarro from the Department of Mineralogy and Petrology (UGR), approximately 10 per cent of all eggs break or crack before consumption, which increases the risk of food poisoning and infections such as Salmonella. Understanding how the different mineral nanostructures contribute to strengthening the eggshell could allow scientists to genetically select laying hens based on specific traits, which would put healthier, more resistant eggs into circulation.

However, studying the internal structure of eggshells can be challenging because of the ease with which they break when under analysis. To overcome this obstacle, the team used a focused ion beam sectioning system that allowed them to accurately cut the samples out of the eggshells and study them using electron microscopy.

###

The full paper is available via this link: Athanasiadou et al. Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Science Advances 30 Mar 2018: Vol. 4, no. 3, eaar3219 DOI: 10.1126/sciadv.aar3219

Media Contact

Alejandro B. Rodríguez Navarro
[email protected]
34-615-944-752
@canalugr

http://www.ugr.es

http://www.ugr.es/en/about/news/study-paves-way-healthier-and-more-robust-eggs

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aar3219

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Cold-Stressed Liver Exosomes Boost Brown Fat Heat

August 22, 2025
Maternal and Child Health Inequities in Sub-Saharan Africa

Maternal and Child Health Inequities in Sub-Saharan Africa

August 22, 2025

Human Milk Vesicles Boost Fat Burning via Mitochondria

August 22, 2025

Microscopy Reveals Details of Anterior Human Eye

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mechanisms of Amino Acid Transport in Plants Unveiled

Osimertinib Myotoxicity: FDA Data Reveals Risks

Vibronic Coupling Fuels Symmetry Breaking in Quadrupolar Dyes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.