• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Bacterial ‘gene swapping’ sparks disease outbreaks

Bioengineer by Bioengineer
April 17, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study by scientists at the University of Liverpool documents, for the first time, how the ability of bacteria to swap genetic material with each other can directly affect the emergence and spread of globally important infectious diseases.

Known as 'horizontal gene transfer', this phenomenon is understood to have played a role in developing the global antimicrobial resistance (AMR) crisis. However, the dynamics of AMR transfer through bacterial populations and its direct impact on human disease is poorly understood.

To learn more about this relationship, a team of researchers from the University of Liverpool, Wellcome Trust Sanger Institute and Public Health England, combined epidemiological information from cases together with whole genome sequencing analysis of bacteria from those cases.

The study, which is published in Nature Communcations, looked at three epidemics in England of the globally important diarrhoeal pathogen Shigella between 2008 and 2014.

The findings found that English epidemics of these typically-rare pathogens were associated with resistance to the antibiotic azithromycin, and that many of the co-circulating Shigella strains carried the azithromycin resistance genes on the same plasmid.

Plasmids are small circular DNA molecules that can be transferred horizontally between bacteria. They contain the bacterium's genetic material but are separate from the cell's chromosomal DNA.

By combining this genomic information from the different Shigella strains with the epidemiological information about the outbreaks, the researchers were able to demonstrate that the transfer of the plasmid was facilitating new epidemics.

Dr Kate Baker, from the University's Institute of Integrative Biology, said: "Through this study we've been able to show that horizontal gene transfer can rapidly facilitate new epidemics of important pathogens.

"This means that in all areas of AMR research, public health management and surveillance we need to be analysing our pathogen genomes in great detail to understand the epidemiology of antimicrobial resistance."

Antimicrobial resistance (AMR) is a global epidemic. In 2014 the World Health Organisation advised that the antibiotics we are reliant on are in danger of becoming obsolete. It is estimated that by the year 2050, deaths attributed to antimicrobial resistance will claim up to ten million lives per year, surpassing those lost to cancer.

###

Media Contact

Nicola Frost
[email protected]
@livuninews

http://www.liv.ac.uk

https://news.liverpool.ac.uk/2018/04/17/bacterial-gene-swapping-shown-to-spark-disease-outbreaks/

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-03949-8

Share12Tweet7Share2ShareShareShare1

Related Posts

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.