• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Look! Down in the petri dish! It’s a superplatelet!

Bioengineer by Bioengineer
April 12, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michael Smith Laboratories

Blood platelets have one main job: Stop bleeding by forming clots. Sometimes, however, these tiny cell fragments fail when they are needed most – when a person is experiencing massive bleeding, usually due to trauma.

A University of British Columbia bioengineer has developed a potential strategy for endowing platelets with extra powers so they can rise to the occasion and continue coagulation. If it's proven to work in clinical situations, such "superplatelets" might become a standard part of emergency department supplies, along with bandages, oxygen and saline.

"Coagulation, which depends on a series of complex biochemical reactions, works great for scrapes and paper cuts," said Christian Kastrup, an Associate Professor in the Department of Biochemistry and Molecular Biology. "But trauma often overwhelms this intricate, delicate process. We wanted to make it more resilient."

Platelets are the first-responders to blood vessel ruptures – they swarm to the edges of an exposed vessel wall, and their shape changes from smooth and round to sticky and star-like, so they can easily clump together.

But that is only part of coagulation. To plug a wound, the platelets must be woven together into a spongy mass that hardens and contracts into a clot. That weaving is done by a tough material called fibrin, created through a multi-step chain reaction that depends on an enzyme called thrombin.

Under extreme stress, such as trauma, that chain reaction fizzles out for a variety of reasons – what doctors call "trauma-induced coagulopathy" or "TIC."

Dr. Kastrup, a scientist in UBC's Michael Smith Laboratories and the Centre for Blood Research, wondered if platelets could be modified to play a bigger role in coagulation, and effectively rescue the reaction.

As described in the Journal of Thrombosis and Haemostasis, Dr. Kastrup and graduate student Vivienne Chan inserted thrombin into natural, nano-sized, bubble-like containers called liposomes, and mixed them with platelets by the hundreds of thousands. After the platelets absorbed the nanoparticles, they immersed them in various types of blood samples.

The thrombin-loaded platelets clotted blood from healthy people approximately 30 per cent faster compared than normal platelets, and formed clots that were 20 per cent stronger. In blood collected from two Seattle patients with TIC, the modified platelets clotted blood 20 per cent to 40 per faster.

Modified platelets also fully compensated for the delayed clotting times caused by elevated blood acidity (a common occurrence in trauma) or by aspirin and naproxen, drugs often taken regularly by people specifically for their anti-clotting properties as a way of preventing heart attack or stroke. They also performed well in blood taken from people with hemophilia, a disease that prevents the blood from clotting.

If these superplatelets work in animal models, in human clinical trials and are ultimately approved for medical use, Dr. Kastrup envisions that trauma centres could have bags of modified plasma on hand for patients with severe bleeding. The modification could conceivably be done at the time that donated blood is processed.

"Trauma is the leading killer of people under 45 years old, and blood loss is the second most common cause of such deaths," Dr. Kastrup said. "By tweaking the body's own clotting mechanism, we might be able to make trauma more survivable."

###

Media Contact

Brian Kladko
[email protected]
604-827-3301
@UBCnews

http://www.ubc.ca

Original Source

http://www.med.ubc.ca/look-down-in-the-petri-dish-its-a-superplatelet/ http://dx.doi.org/10.1111/jth.14006

Share13Tweet7Share2ShareShareShare1

Related Posts

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

August 22, 2025
blank

Global Study Finds Heart Disease Disproportionately Affects Racialized and Indigenous Communities, Exacerbated by Data Gaps

August 22, 2025

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

August 22, 2025

Simon Family Supports Stevens INI in Advancing Global Alzheimer’s Research

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stretchable Displays Achieve Enhanced Density with Overlapped Pixels

Over or Under? Navigating the Twists and Turns of Genetic Research

Revolutionizing Brain Disease Treatment: The Hemoglobin Breakthrough

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.