• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Freedom and flexibility: Thinking outside the cell for functional genomics

Bioengineer by Bioengineer
April 4, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over the past two decades, the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, has transitioned from a high-throughput genome sequencing center to a national user facility that provides researchers around the world with access to sequencing and computational analysis capabilities on projects relevant to the DOE missions of energy and environmental challenges. Along with advances in sequencing technologies and capacities, JGI has developed capabilities such as single-cell genomics, synthetic biology, and metabolomics to move beyond generating a DNA sequence to understanding gene functions for a myriad of applications.

"JGI's strategic direction is to translate genomic information into functional understanding," noted Director Nigel Mouncey. "Today, the scale and cost of DNA sequencing have afforded the generation of an unprecedented level of gene and genome information for which relatively little is known regarding function. Thus, there is a critical need to rapidly, and at scale, assign validated function of genes, pathways and genomes."

Cell-based tests to determine metabolic function are challenging due to the need for cell growth, complex regulatory mechanisms, interference with or from other metabolic pathways and cellular processes. The latest proposal approved through the JGI's Emerging Technologies Opportunity Program (ETOP) is led by Hal Alper of the University of Texas at Austin and Michael Jewett of Northwestern University. Aided by nearly $500,000 in funding over two years from the JGI, the project aims to develop an optimized cell-free platform that will enable researchers to speed up the "build" and "test" portion of the design-build-test-analyze cycle in synthetic biology. Cell-free systems have been used successfully for individual protein expression over decades, but more recent applications have focused on enzyme screening, metabolic pathway design and prototyping and immune system characterization.

"What we're trying to develop is a generic platform that's pathway-agnostic, a seamless pipeline from DNA design to prototype," said Alper. "It's a tool for both discovery and understanding, but always a way to speed up cell engineering."

Launched in 2013, the ETOP aims to bring new technologies developed at other institutions into the JGI, making them available to its users for energy and environment applications and adding value to the high throughput sequencing and analysis currently being done for JGI users.

The cell-free systems approach outlined in the proposal starts by lysing pre-optimized cells from selected strains, and then working with the lysates from these strains to express genes and pathways of interest which can be mixed in cocktails of varying ratios for easily and rapidly characterizing novel and improved pathways. Alper noted that this is a collaborative effort in which their labs will be handing off the technology development several times throughout the timeframe to enable progress.

"People have used cell-free frameworks to understand biochemistry for decades. What's new is idea of treating a pathway as something that can be built from enzyme cocktails," said Jewett. "In our design-build-test cycle, the unit isn't a plasmid or a construct, but a lysate enriched with pathway enzymes. You have freedom and flexibility; direct access to reaction conditions because you don't have cell walls, and it's useful for non-model organisms. This can accelerate design loops and can lead to the question, rather than taking 10,000 shots on goal in a month, can we do it in a week?"

"This ETOP will develop novel and scaleable cell-free expression platforms that are optimized for particular key nodes of metabolism and will be demonstrated for a range of biosynthetic genes and pathways," said Mouncey. "This technology is highly complementary to existing capabilities at JGI, and once in-house, will be combined in novel integrative workflows that allow for sophisticated genome mining to DNA synthesis to cell-free expression to high-throughput metabolomics to high-performance computing to characterize the function of 1000s of genes. Working with the leaders in this exciting field will lead to highly impactful and valuable technology for our Users."

Jewett added that the cell-free systems framework wasn't even possible two years ago. He cited the confluence of advances in DNA synthesis, improvements in cell-free biosynthesis capabilities, and genome engineering tools including novel strategies such as multiplexed CRISPR tools that have enabled this new platform.

"We hope to draw in researchers from the broader community that can leverage these new tools within the JGI," he added.

###

The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility of Lawrence Berkeley National Laboratory, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow @doe_jgi on Twitter.

DOE's Office of Science is the largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

David Gilbert
[email protected]
@BerkeleyLab

Home

https://jgi.doe.gov/freedom-flexibility-etop-thinking-outside-the-cell-for-functional-genomics/

Share13Tweet7Share2ShareShareShare1

Related Posts

Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

October 9, 2025
blank

New Global Study Reveals How Introduced Animals Alter Island Plant Dispersal

October 8, 2025

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

October 8, 2025

Calm Red Brocket Deer Can Learn “Come” and Other Commands, While the Flightiest Struggle

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1145 shares
    Share 457 Tweet 286
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cardiovascular Issues Heighten Oxidative Stress in Migraines

Mutation Hotspots Reveal Spermatogonia Clonal Growth

Overcoming Challenges in Long-Term Care for Young Cancer Survivors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.