• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New structure identified in membrane of disease-causing bacteria

Bioengineer by Bioengineer
May 1, 2016
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

AMHERST, Mass. – Mycobacteria cause a number of dangerous, difficult-to-treat diseases including leprosy and tuberculosis, and progress has been slow in eradicating them. But new strategies for combating these bacteria may eventually emerge from better understanding their basic structure and mechanisms, say molecular microbiologist Yasu Morita and his doctoral student Jennifer Hayashi at the University of Massachusetts Amherst.

In the current issue of Proceedings of the National Academy of Sciences, they report an advance in the fundamental knowledge about a model species of these pathogens, Mycobacterium smegmatis. First author Hayashi and her advisor Morita demonstrate the existence of a distinct domain, or area, on the bacteria's plasma membrane that is crucial for the cell's ability to grow.

Morita says, "This wasn't known and I think many people will be surprised to see that there is such a formal membrane structure there that we didn't expect." The two write that findings provide "an important insight into the potential regulatory mechanisms of lipid metabolism in mycobacteria, where disrupting control points might offer a way to interrupt their growth."

Morita adds, "We hope that discovering this dedicated domain will one day lead to methods of inhibiting bacterial growth, but the real problem of mycobacterial diseases is that these particular bacteria can lie dormant for long periods without active growth. Knowing more about this newly discovered membrane domain could someday let us understand how they control their own growth and how they go dormant to hide in the body."

For this work, Hayashi built on Morita's earlier findings that suggested M. smegmatis's membrane has a specialized domain. Morita says, "I went as far as possible with the techniques available at the time. I showed that this was definitely worth pursuing. I reported a very specific biosynthesis going on in an organized membrane. My data suggested that it's not just a membrane but it's a manufacturing factory of membrane lipids."

Now that techniques such as large-scale comparative proteomics, lipodomics and fluorescence microscopy are available, Hayashi turned to these powerful tools to ask precisely what proteins and lipids, or fats, are present at the membrane domain, and what they do.

She identified more than 300 proteins in the domain and more than 600 in non-domain membrane, a total of nearly 1,000 membrane-associated proteins from a single experiment. "It's a pretty robust approach to figure out what's happening in the domain and non-domain areas, to confirm that the domain is distinct and observe that the two areas have different metabolic activities going on," Hayashi says.

In the lipdomic experiment made possible by collaboration with Branch Moody at Harvard's Brigham and Womens' Hospital, the UMass Amherst microbiologists found more than 600 lipids in the domain and nearly 800 in non-domain regions, providing "another piece of evidence that they are different and have different functions," Hayashi says.

Finally, she fused proteins identified in the proteomics experiment to fluorescent proteins and tracked them to the cell's local domain using fluorescent microscopy. "We were able to note that domain- and non-domain-associated proteins have distinct fluorescent patterns that are maintained while the cell grows. They stay separate, which confirms that this is a spatially distinct domain of the plasma membrane when cells are growing," Morita notes.

The two microbiologists say their discovery is just the latest in the recent series of discoveries showing that the old image of lowly bacteria being simple bags of enzymes is not true.

###

This work was supported by the Mizutani Foundation and the Potts Memorial Foundation, which supports TB research in particular, plus a UMass Amherst Graduate School dissertation grant.

Media Contact

Janet Lathrop
[email protected]
413-545-0444
@umassscience

http://www.umass.edu

The post New structure identified in membrane of disease-causing bacteria appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

Magnesium Implants Boost Bone-Immune Health In Vitro

Magnesium Implants Boost Bone-Immune Health In Vitro

August 2, 2025
GBA1 Variants’ Impact on Parkinson’s: In Silico Analysis

GBA1 Variants’ Impact on Parkinson’s: In Silico Analysis

August 2, 2025

Deep Learning Advances MRI Diagnosis of Brucella

August 2, 2025

Predicting Lung Infections After Brain Hemorrhage

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TrueBeam vs. Halcyon: Breast Cancer Radiotherapy Comparison

Magnesium Implants Boost Bone-Immune Health In Vitro

Unmet Supportive Care Needs in Cancer Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.