• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Three-in-one molecule shows promise in helping certain breast cancer patients

Bioengineer by Bioengineer
March 22, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Phil Jones, Senior Photographer, Augusta University

AUGUSTA, Ga. (Mar. 19, 2018) – A newly designed three-part molecule could be the one answer patients with a certain form of breast cancer are looking for, scientists report.

This chimera, created by a team at the Georgia Cancer Center, has the ability to simultaneously decrease the expression of three growth factors that are over-expressed in some cancers.

The growth factors are human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), and epidermal growth factor receptor (EGFR). The new chimera interferes with HER2 and HER3 signaling and ultimately leads to cancer cell death, as shown in the group's recent publication in Molecular Therapy: Nucleic Acids.

"When HER2 is expressed in a cell, you'll usually find high expression of HER3, too," said Dr. Hongyan Liu, bioengineer at the Georgia Cancer Center at Augusta University and the Center for Biotechnology and Genomic Medicine at the Medical College of Georgia at Augusta University.

Extensive studies have found that 20% to 30% of breast cancers are characterized by over-expression of HER2, which makes the cancer cells grow and divide faster, leading to a cancer that's more aggressive and more likely to be resistant to the standard of care. Patients with this type of breast cancer tend to have a poorer prognosis.

"As a bioengineer, I am developing the materials for cancer-targeted treatment," Liu said. "I have experience building multifunctional chimeras to target different types of genes associated with cancer cells."

Liu and her team created their molecule to target HER family receptors EGFR, HER2, and HER3 all at once, since it is well-known that another HER family member can compensate for one that is blocked by a drug having a single target.

Each component of this tripartite molecule has potent anti-tumor activity. The molecule was designed such that the EGFR-targeting component is sandwiched between the HER2- and HER3-targeting components in what is known as a HER2 aptamer-EGFR siRNA-HER3 aptamer chimera. This construction enables the EGFR component to reach its target within HER2- and HER3-expressing cells. Compared to individual components, the chimera is large enough to avoid renal depletion, resulting in a prolonged circulation time and increased efficiency.

The newly crafted molecule is non-toxic, simple to produce, and cost-effective compared to the production of alternate treatment strategies, such as antibodies and small molecule inhibitors.

Liu's ongoing studies are testing the ability of the three-in-one chimera to treat breast cancers that are resistant to Herceptin, a drug that targets HER2. This work is being done in collaboration with Dr. Hasan Korkaya, assistant professor, Biochemistry and Molecular Biology at the Medical College of Georgia, who has developed drug-resistant cell lines, and with breast cancer clinicians.

"We need to prove that this molecule will work on Herceptin-resistant breast cancer patients," Liu said.

Since other cancers, such as lung and head and neck, proliferate due to HER family over-expression, Liu anticipates that the chimera's utility will not be limited to breast cancers alone.

###

Media Contact

Chris Curry
[email protected]
706-799-8841
@MCG_AUG

http://www.augusta.edu/mcg/

Related Journal Article

http://dx.doi.org/10.1016/j.omtn.2017.12.015

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.