• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Environmental exposures more determinant of respiratory health than inherited genetics

Bioengineer by Bioengineer
March 6, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Toronto (March 6, 2018) – Researchers have found strong evidence that environmental exposures, including air pollution, affect gene expressions associated with respiratory diseases much more than genetic ancestry. The study, published today in Nature Communications, analyzed more than 1.6 million data points from biological specimens, health questionnaires and environmental datasets, making this study one of the largest ever to examine the relationship between gene expression and environmental stimuli. These findings represent a groundbreaking use of big data to uncover the environmental factors that are behind diseases and inform strategies for prevention, an approach that would apply to a number of diseases, including cancer.

Genetic, health and disease data of participants from Montreal, Quebec City and Saguenay were linked with environmental information such as air pollution, walkability and access to food to see how these factors impact gene expression. Participants were enrolled in the Quebec arm (CARTaGENE) of the Canadian Partnership for Tomorrow Project (CPTP), which supports research into environmental, lifestyle and genetic factors related to the development and progression of cancer and chronic diseases. More than 300,000 Canadians, 1 per cent of the population, have enrolled in CPTP since its launch in 2008.

The study used deep characterization of gene expression signatures from participants and linked that data with environmental information. "We were surprised to find that we were able to stratify genetic ancestry within Quebec, identifying individuals whose descendants were from Montreal versus Saguenay for example," explains Dr. Philip Awadalla, the study's senior author. "This helped us to show how most gene expression is not derived by ancestry, and that environmental exposures associated with living in a particular city or region are more impactful on gene expression associated with disease traits than heritable variation."

One of the main findings of the study was that exposure to higher levels of particulate matter and nitrous dioxide in the Saguenay area affected the expression of genes associated with oxygen pathways and respiratory function. This resulted in higher rates of respiratory ailments such as asthma and chronic obstructive pulmonary disease (COPD). The study also revealed that there are genetic variants that control how a person's gene expression responds when exposed to environmental stimuli.

"This study demonstrates Ontario's leadership in research and in particular, the importance of big data," said Reza Moridi, Minister of Research, Innovation and Science. "Today, with quantities of data never before available, we are able to make important discoveries that will help us fight and overcome disease."

"Our study shows how one can use the large scope and scale of data in Canada's largest health cohort to better understand how our genes interact with environmental exposures and shape individual health," says Awadalla. "I encourage all those engaged in this type of research, both in Canada and around the world, to take advantage of this resource."

Awadalla is Director and Sr. Principal Investigator, Computational Biology, OICR, the Executive Scientific Director of the Ontario Health Study (Ontario's CPTP cohort), Director of the Genome Canada, Canadian Data Integration Centre and Professor, Department of Molecular Genetics, Faculty of Medicine, University of Toronto

Controlled access to cohort data and biological samples is available to researchers through the CPTP Data Portal and CARTaGENE.

###

About OICR

The Ontario Institute for Cancer Research (OICR) is a collaborative, not-for-profit research institute focused on accelerating the translation of new cancer research discoveries to patients around the world while maximizing the economic benefit of this research for the people of Ontario. Funding for OICR is provided by the Government of Ontario.

For more information, please contact:

Hal Costie
Senior Communications Officer
Ontario Institute for Cancer Research
647-963-5289
[email protected]
@OICR_News

Media Contact

Hal Costie
[email protected]
647-963-5289

Homepage

http://dx.doi.org/10.1038/s41467-018-03202-2

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.