• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Efficacy of antibody targeting Devic’s disease proven in new…

Bioengineer by Bioengineer
February 13, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka – Neuromyelitis optica (NMO), also known as Devic's disease, is a central nervous system disorder that primarily affects the eye nerves (optic neuritis) and the spinal cord (myelitis). It occurs when the body's immune system produces autoantibody in the central nervous system. Autoantibodies are antibodies that target one or more of the individual's own proteins. Most patients with NMO present severe clinical symptoms, such as blindness in one or both eyes, weakness or paralysis in the legs or arms, and painful spasms.

At present, there is no cure for NMO, and no medications have been specifically approved to treat it. This critical gap has motivated a team of researchers from Osaka University to discover new therapeutics against NMO.

"Recently, a role for the protein repulsive guidance molecule-a (RGMa) in the immune system has become apparent. Inhibiting RGMa with its antibody in multiple sclerosis (MS) in rats promotes motor recovery after spinal cord injury and improve disease scores," explains Kana Harada, lead author of the team's study recently published in Scientific Reports. "Because NMO and MS are both immune-mediated neurodegenerative diseases with broadly comparable symptoms, we hypothesized that anti-RGMa antibody may have a suppressive effect on NMO."

The team started off by developing a new rat model that mimics the pathology of intractable NMO by the injection of the antibody NMO-immunoglobulin G (IgG) into the spinal cord. NMO is characterized by the presence of the serum autoantibody NMO-IgG. In contrast to previous animal models of NMO that generally produced disseminated lesions, the new localized model has a single well-demarcated inflammatory lesion, allowing precise investigation of the correlation between the lesion with the deficit in motor function disrupting the corticospinal tract.

"We are excited to find in rats that developed optic neuritis, relaxation of neurological symptoms was observed by suppressing RGMa using humanized monoclonal anti-RGMa antibody antibodies," corresponding author Yuki Fujita says. "Also, the inhibition of RGMa promotes restoration of injured neural networks, presumably leading to a delay in the progression of the secondary phase of NMO."

"Our findings support the potential of humanized anti-RGMa antibody as a valid therapeutic approach. We expect this antibody to be further explored as a new therapeutic agent NMO," co-author Toshihide Yamashita notes.

###

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

http://resou.osaka-u.ac.jp/en/research/2018/20180109_1 http://dx.doi.org/10.1038/s41598-017-18362-2

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sargassum’s Health Under Ocean Acidification and Nitrogen Boost

November 14, 2025
blank

New Microfluidic ‘MISO’ Platform Achieves High-Resolution Cryo-EM Using Minimal Starting Material

November 14, 2025

Targeting the Hippo Signaling Pathway: A New Therapeutic Approach for Nephronophthisis

November 14, 2025

Duplication and Mutation of Aquaporin Genes Restore Wide Solute Permeability in European Eels

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Huntington’s Disease: Expansion, Pathology, and Treatments

Impact of Nanosecond Electric Pulses on Mitochondria

Impact of Daily Activity on LVAD Patients’ Lives

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.