• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home BIOENGINEERING

Study IDs 90 genes in fat that may contribute to dangerous diseases

Bioengineer by Bioengineer
February 8, 2018
in BIOENGINEERING
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Virginia

A sweeping international effort is connecting the dots between genes in our fat cells and our risk for obesity and cardiometabolic diseases such as heart disease and type 2 diabetes. The researchers have identified approximately 90 genes found in fat that could play important roles in such diseases – and could be targeted to develop new treatments or cures.

Unlike many genetics studies, the huge project looked at how genes' activity actually manifests in human patients – in this case, 770 Finnish men. The results will help doctors and scientists better understand how normal gene variations can affect individuals' health and risk for disease.

"There are a lot of regions in our genomes that are associated with increased risk for, let's say, type 2 diabetes. But we don't always understand what's happening in these regions," said Mete Civelek, PhD, of the University of Virginia School of Medicine. "This study actually addresses some of those questions."

Gene Effects on Health

The men used in the study have had their health histories, body composition, blood work and other wellness factors recorded in astoundingly complete detail – Civelek called them "one of the very few extremely well characterized populations in the world." The precise documentation allowed the researchers to draw conclusions about the effects of gene variations that naturally occur in subcutaneous fat. "Type 2 diabetes, coronary artery disease and obesity are multifactorial and complex diseases," Civelek said. "Genetic factors do not work in isolation – they work in a holistic way, so I think that these kind of studies that we are publishing are key to understanding what's happening in human populations."

That understanding could translate into better treatments for cardiometabolic diseases that pose a tremendous public health threat. Heart disease, for example, is the No. 1 killer in the United States. "Maybe by looking at these other markers we will be able to predict someone's risk much better, so that, for example, they can modify their diet or lifestyle even before type 2 diabetes develops," Civelek said. "Or let's say type 2 diabetes has already developed. We might be able to target some of these novel genes as a potential cure."

DNA in 3D

The project helps advance a more sophisticated – and three-dimensional – view of our DNA. Typically, people think of DNA as long, neat strands, laid out like a stretched string. But in reality, the strands are clumped together inside cells like spaghetti. Genes that appear far away from each other when viewed linearly actually may be quite close when DNA is balled up inside the cell. That physical proximity affects what they do.

"For a lot of cases, what we found was that these different genomic regions actually affect gene expression in a far-away locus, not necessarily the immediate neighborhood," he said. "That's because the DNA is compacted and there's a three-dimensional structure. [Genes] can actually come together in three-dimensional space and can affect each other."

That can have big implications for understanding what genes are doing. "We're saying that it may be the gene that we thought was causing a phenomenon is not," Civelek said. "There may actually be another gene at work that is a little bit farther away."

Civelek, of UVA's Department of Biomedical Engineering, is already hard at work on a follow-up to the project, examining a potential "master switch" that may be regulating the activity of many different genes associated with obesity, HDL (or "good") cholesterol level and risk for type 2 diabetes.

Findings Published

The effort included researchers from UVA; the University of North Carolina at Chapel Hill; the University of California, Los Angeles; Bristol-Myers Squibb; the University of Eastern Finland; the University of Michigan, Ann Arbor; the National Institutes of Health's National Human Genome Research Institute; and King's College London. Their findings have been published in the American Journal of Human Genetics.

###

The work received financial support from the National Institutes of Health, the Academy of Finland, the Finnish Heart Foundation, the Finnish Diabetes Foundation, the Finnish Funding Agency for Technology and Innovation, and the Commission of the European Community. Bristol-Myers Squibb also contributed.

Media Contact

Josh Barney
[email protected]
434-906-8864

http://www.healthsystem.virginia.edu/home.html

Share13Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Ferrets, cats and civets most susceptible to coronavirus infection after humans

December 10, 2020
IMAGE

Deep Longevity publishes an epigenetic aging clock of unprecedented accuracy

December 8, 2020

How poor oral hygiene may result in metabolic syndrome

December 8, 2020

New findings shed light on the repair of UV-induced DNA damage

December 8, 2020
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncultivated ‘Entotheonella’ Symbionts: Unlocking Marine Sponge Riches

Managing Cyber-Physical-Human Systems in Connectivity Challenges

Precision Gene Editing: A New Hope for Heart Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.