• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Observing brain diseases in real time

Bioengineer by Bioengineer
February 8, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

For rent: 32 individual rooms for a combined surface area of 4cm2, heating and food included! Biologists and microfluidics specialists at EPFL have joined forces and developed a highly innovative research tool: a 2cm by 2cm 'chip' with 32 independent compartments, each of which is designed to hold a nematode – a widely used worm in the research world. The device is described in the journal Molecular Neurodegeneration.

"Unlike conventional cultures in petri dishes, this device lets us monitor individual worms rather than a population of them," said Laurent Mouchiroud, from EPFL's Laboratory of Integrative Systems Physiology.

Freeze frame

Each of these 'cells' is fed by microfluidic channels. These allow variable concentrations of nutrients or therapeutic molecules to be injected with precision. The ambient temperature can also be adjusted.

Each worm is observed through a microscope throughout its life. However, for more detailed investigations and very high resolution images, the worms need to be immobilized. "For this we use a temperature-sensitive solution," said Matteo Cornaglia, from the Laboratory of Microsystems. "We inject it in liquid form at 15°C, then bring the temperature up to 25°C, which transforms it into a gel. The worm is immobilized in just a few minutes, then we bring the temperature back down and rinse out the solution – and the worm is able to move again."

Protein aggregates in the cross-hairs

This method is fully reversible and does not affect the nematode's development. Using it, researchers can observe the formation of protein aggregates linked to several neurodegenerative diseases like Alzheimer's, Parkinson's and Huntington's. The same worm can be photographed several times, as the clusters develop. "This is totally new, and it will help us learn more not only about how these aggregates grow, but also about the tissue in which they form," said Mouchiroud. "In addition, we have already been able to test and observe the effect of certain drugs on how the clusters form."

Nematodes are very useful models for studying a number of human diseases. In many cases, they obviate the need to experiment on rodents. But until now, handling nematodes was a delicate affair. By simplifying the process, this new technology should accelerate research on numerous afflictions and how they are treated.

###

Media Contact

Laurent Mouchiroud
[email protected]
41-216-930-954
@EPFL_en

http://www.epfl.ch/index.en.html

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.