• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study finds amoeba ‘grazing,’ killing bacteria usually…

Bioengineer by Bioengineer
February 8, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: David Tenenbaum, University Communications

MADISON -Bacteria have developed an uncountable number of chemistries, lifestyles, attacks and defenses through 2.5 billion years of evolution. One of the most impressive defenses is biofilm — a community of bacteria enmeshed in a matrix that protects against single-celled predators and antibiotics — chemicals evolved by competitors through the course of evolution, including other bacteria and fungi.

Now, a University of Wisconsin-Madison professor of bacteriology has shown the first proof that a certain group of amoeba called dictyostelids can penetrate biofilms and eat the bacteria within. "This is the first demonstration that dicty are able to feed on biofilm-enmeshed bacteria," Marcin Filutowicz says.

In an article now online in the journal Protist, Filutowicz, first author Dean Sanders of the Wisconsin Institute for Discovery, and colleagues show time-lapse, microscopic movies proving the amoeba's voracious appetite for five species of bacteria. In the study, the researchers pitted four types of amoeba called dictyostelium (dictys) against biofilm-forming bacteria that harm plants or humans. The target bacteria included:

  • Pseudomonas aeruginosa, a common, multi-drug resistant bacteria that afflicts people who have, for example, burns or cystic fibrosis;
  • Pseudomonas syringae, pathogen of beans;
  • Klebsiella oxytoca, cause of colitis and sepsis; and
  • Erwinia amylovora, cause of fire blight in apples and pears.

As expected, the results depended on the strain of dicty and species of bacteria; in several cases, the dictys completely obliterated a thriving biofilm containing millions of bacteria within a day or two. The study, Filutowicz says, "contains the first movies ever to show dicty cells moving into a biofilm and devouring the bacteria." Because they form a multi-cellular phase sometimes called a "slug," dictys are sometimes called "social amoeba."

Beyond the visual evidence, spore germination and the subsequent union of single-celled dictys into a multi-cellular "slug" both showed successful attacks against all four species of bacteria.

Filutowicz became interested in dictys after discovering a neglected archive of about 1,800 strains amassed by Kenneth Raper, a bacteriology colleague who started collecting the soil-borne microbes around the world in the 1930s. "Raper was the first to isolate dictys, but after he died, his life work was scattered around the department and neglected," Filutowicz says.

Filutowicz was intrigued, but he knew very little about dictys. Then, the answer to his most fundamental question — "How do I grow them?" triggered a mental chain reaction. He found that Raper and his followers were feeding and growing dictys in the lab using bacterial prey, but nobody had apparently pursued their real-world potential as microbe hunters. "If you grow them on E coli [a common resident of the human intestine], I quickly realized, because dictys are not pathogenic, we might use them as a biological weapon against bacteria."

Having previously started Conjugon, a company devoted to developing benign bacteria to defeat pathogenic microbes, Filutowicz says he was "attuned to biological approaches, which were unheard then, and so this idea fell on a very fertile mind."

With bacteria becoming resistant to a growing number of antibiotics, that's welcome news, although using a living organism may add complexity to the task of getting regulatory approval.

Since 2010, Filutowicz has learned a good deal about how dicty "graze" upon bacteria, and which ones they prefer. "We looked at how these cells dismantle biofilms, trying to understand what physical, chemical and mechanical forces deconstruct the biofilms, and how the dictys move in 3-D space. These are phagocytes, and they behave much like our own immune cells," says Filutowicz.

His collaborator, Curtis Brandt, a professor of ophthalmology and visual science at UW-Madison, has produced promising results suggesting that the organisms are harmless to rodents, and is preparing to use dictys to fight bacterial keratitis, an eye infection, first in rodents and then in humans, in research supported by the National Institutes of Health.

"This medical application may not reach the clinic in my lifetime, but it has a lot of promise, and eventually we may be able to advance it in many other medical uses," Filutowicz says.

In 2010, Filutowicz formed Amoebagone, to advance research into use of dictys, starting by trying to fight fire blight and other bacterial infections of fruit trees and vegetables; supported by the National Science Foundation.

Between the far-off human medical potential, and the near-term use in agriculture, Filutowicz is delightedly pulling on the thread left by Ken Raper's beneficial microbes; licensed by the Wisconsin Alumni Research Foundation to AmoebaGone.

"To make a discovery, it needs some level of naiveté," he says. "If you know too much, you immediately appreciate why things will not work, cannot work. Otherwise, if it was a good idea, people would have done it already. Colleagues said dictys behaved like human phagocytes, but they never mentioned harnessing them as biological controls. Every day I walk through the departmental hallway and read the inscription: "Discovery consists of seeing of what everybody has seen and thinking what nobody has thought. I was lucky enough to enter this as the foolish innocent."

###

Ñ David Tenenbaum, 608-265-8549, [email protected]

Media Contact

Marcin Filutowicz
[email protected]
608-417-6142
@UWMadScience

http://www.wisc.edu

Original Source

Study finds amoeba “grazing,” killing bacteria usually protected by film

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.