• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Undergraduate student uncovers genes associated with aggressive form of brain cancer

Bioengineer by Bioengineer
February 8, 2018
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Oncotarget, doi:10.18632/oncotarget.24228

CLEMSON, South Carolina – When Leland Dunwoodie, an undergraduate researcher in biochemistry, approached his PI about wanting to start research on "some human stuff" in the spring of 2016, he didn't imagine it would lead to the discovery of 22 genes that are implicated in glioblastoma, the most aggressive type of brain cancer.

"I definitely didn't come to Clemson thinking about brain cancer research," Dunwoodie said. "I was working on a project with grapes and other plants. I told Dr. (Alex) Feltus that I wanted to do some human stuff, and he said, 'That's cool – pick an organ.' "

After consulting with his family – should he study the brain or the heart? – Dunwoodie decided on the brain, and specifically on brain cancer. A prior summer internship at the Van Andel Institute had spurred his interest in cancer research.

Fast-forward two years later to a January 2018 publication in the journal Oncotarget, Dunwoodie's study is the first to describe glioblastoma-specific gene co-expression relationships between a group of 22 specific genes.

Heard in the news as the disease afflicting Senator John McCain and Beau Biden, the late son of U.S. Vice President Joe Biden, glioblastoma is highly malignant and is characterized by its lethality. Patients with glioblastoma have a median survival time of only 14.6 months after diagnosis.

"Like many other tumors, diseases, and complex traits, glioblastoma is controlled by a variety of genetic and epigenetic factors," Dunwoodie said. "If there was one master-regulator of these cancers, we'd say, 'We're going to drug that, and we're going to save millions of lives every year,' but there are more things going on in glioblastoma than we can presently identify."

However, the complexity of glioblastoma is fitting for research in professor Feltus' Systems Genetics Lab in the department of genetics and biochemistry, where Dunwoodie is a student. Systems genetics, as the lab's name implies, uses computer- and mathematics-based approaches to analyze biological systems, such as genes and regulatory pathways.

To make the discovery, Dunwoodie first compiled data from two online public databases for genomic information: The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI).

From TCGA, more than 2,000 tumor expression datasets were downloaded, each one detailing how tumor cells differ from normal cells at the genetic level. Five different types of tumors, including those from bladder, ovarian, thyroid, lower-grade glioma and glioblastoma cancers, were included in the data to achieve a well-rounded case study.

The 2,000-plus datasets, each showing approximately 75,000 genes, were then organized into a gene expression matrix (GEM), a table that quantifies the expression level of each gene across every sample. For example, one of the genes pulled from TCGA, called LAPTM5, encodes a protein that is involved in the formation of blood cells. In the gene expression matrix, LAPTM5 was assessed across each tumor type to gauge whether it is overly active (overexpressed) or underactive (underexpressed) in one tumor type versus another, indicated by a numerical ranking. The same scoring process was then conducted for the 74,999 remaining genes across the five tumor types in the TCGA data.

A separate GEM, encompassing 210,000 genes from 204 datasets from the NCBI database – including normal brain samples, glioblastoma brain samples and brain samples from patients with Parkinson's disease – was created independently for comparison. Will Poehlman, a graduate student in the Systems Genetics Lab, assisted Dunwoodie in preparing these GEMs.

Using novel computer software developed by Feltus and former graduate student Stephen Ficklin – who is now an assistant professor at Washington State University – Dunwoodie was then able to translate the GEMs into two different gene co-expression networks (GCNs), a visual representation of the data that provides insights into how the genes interact with one another.

The software package, known as Knowledge Independent Network Construction (KINC), is novel in that it finds expression relationships between genes without the researchers having to conduct any prior analyses. This knowledge-independent method reduces the amount of "noise" – from laboratory protocols or from natural variation between cells – that can prevent genetic interactions from being discovered.

"Through the two GCNs, we found a group of 22 genes that were co-expressed in a single module both in The Cancer Genome Atlas network and in the NCBI brain network," Dunwoodie said. "Only about 70 genes overlapped between the two networks, and 22 of them were in the same module – the same group of co-expressed genes. The overlap was really easy to spot."

While it's tempting to think that the genes – many of which function in the immune system – are feeding off one another to affect glioblastoma, Dunwoodie says this isn't exactly the case.

"It's hard to say that they're working together, because these are correlations. So, if person A runs eight miles on the same day that person B runs eight miles, it doesn't necessarily mean that they're running together," Dunwoodie said. "It's more likely that these genes are being regulated in the same way, and there are probably several things regulating them that we can't currently identify."

What's more – these 22 genes, when compared between glioblastoma and noncancerous samples, were found to have much stronger co-expression levels in glioblastoma, suggesting a disease-specific regulatory mechanism. The same finding was uncovered when comparing glioblastoma to lower-grade glioma, a less aggressive type of brain cancer, indicating a glioblastoma-specific activity to the 22 genes. The other notable finding of the study showed that the 22 genes are more associated with mesenchymal glioblastoma, a distinct subtype of the cancer, and that when the genes are highly expressed, they decrease survival time for patients in the mesenchymal group.

As is the case in research, where answering one question results in a plethora of new questions, the team's study is just one step toward understanding glioblastoma pathogenesis.

"It would be nice to find out what the 22 genes are specifically doing," Dunwoodie said. "Are they expressed in the surrounding immune cells? Are they a cause of cancer, or are they an effect of cancer? Does cancer propagate their expression? Why these genes are co-expressed there and what they're doing are questions that haven't been answered."

Dunwoodie – who plans to attend medical school to become a physician informaticist – says the tools and methods he learned in the Systems Genetics Lab will stick with him long into his career.

"Cancer research is interesting because there are so many amazing people doing so many amazing things – but this is just one drop in the bucket," Dunwoodie said. "For me, the real purpose is patients being cured. Getting a paper published is great, but no one was immediately cured because of this, and that's the ultimate goal."

###

Media Contact

Hannah Halusker
[email protected]
864-415-1523
@researchcu

http://www.clemson.edu

Original Source

http://newsstand.clemson.edu/mediarelations/undergraduate-student-uncovers-genes-associated-with-aggressive-form-of-brain-cancer/ http://dx.doi.org/10.18632/oncotarget.24228

Share12Tweet7Share2ShareShareShare1

Related Posts

Centella asiatica juice reduces IL-1β inflammation pathways

Centella asiatica juice reduces IL-1β inflammation pathways

November 13, 2025
Xiang Pigs Show Genetic Links to Wrinkled Skin

Xiang Pigs Show Genetic Links to Wrinkled Skin

November 13, 2025

Optimizing Melanin Production from Endophytic Pseudomonas

November 13, 2025

Newly Discovered Predatory “Warrior” Resembled Early Crocodiles and Roamed Before the Dawn of Dinosaurs

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Emergency Imaging for Pediatric Ventriculomegaly Diagnosis

Rare Genetic Variants Linked to ADHD Risk

Enhancing Teamwork in Healthcare: A Visual Framework

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.