• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Researchers overcome obstacle for future stem cell therapies

Bioengineer.org by Bioengineer.org
January 25, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Robert Judson and Fabio Rossi

Researchers have discovered a new technique that overcomes one of the major challenges of stem cell therapy.

A drug, co-created by UBC researchers, might overcome one of the major challenges of stem cell therapy – their tendency to differentiate, becoming specific tissue cells too early and too quickly. If the drug works as well as it did in lab mice, it could help bring new stem cell treatments closer to reality.

UBC and Stanford University researchers were interested in using stem cells to help regenerate muscle tissue for the treatment of muscular dystrophy, a genetic disease in which muscles get damaged over time and weaken. Stem cells hold promise for such diseases because of their ability to differentiate or produce new cells that can form into specialized tissues in the human body. In theory, stem cells could replace damaged tissues with new tissue, unaffected by disease.

However, scientists have had a hard time developing successful treatments, especially for muscle, because once the stem cells are isolated in a lab dish, they stop simply being stem cells and begin to differentiate. In this case, the muscle stem cells stop dividing and become muscle fibres, which do not transplant well.

"Stem cells are like flour – they can be baked into any number of things like pies, cookies or bread – but once that happens, there is no going back to flour," said Dr. Fabio Rossi, professor of medical genetics at UBC's biomedical research centre and school of biomedical engineering, and senior author of the paper. "The problem was that all our stem cells were turning into 'bread' and we really needed them to stay as 'flour' so they could continue to replicate, creating enough cells so that we can transplant and regenerate the tissue effectively."

The researchers identified a protein known as Setd7 that plays a role in controlling stem cell growth and their maturation into muscle fibres. Using a drug that was co-developed by Rossi, they were able to inhibit the Setd7 protein to prevent the stem cells from differentiating so they could continue to divide. They then implanted these stem cells into the hind leg of mice affected by a mouse-model of muscular dystrophy and found that the cells fused to the muscle, regenerated the tissue and improved the strength of the muscle.

"This discovery unveils a new method to boost the therapeutic potential of muscle stem cells, allowing these cells, when transplanted into damaged tissue, to facilitate tissue regeneration and improve muscle function," said Robert Judson, postdoctoral fellow at UBC, senior scientist at STEMCELL technologies and lead author of the paper.

Muscular dystrophy is a rare degenerative genetic disorder that causes progressive muscle weakness over time. The most common form of the disease affects approximately one in 5,000 men and shortens life expectancy considerably. There is currently no cure for muscular dystrophy.

The paper was published today in Cell Stem Cell: http://www.cell.com/cell-stem-cell/fulltext/S1934-5909(17)30511-8.

###

Media Contact

Heather Amos
[email protected]
604-822-3213
@UBCnews

http://www.ubc.ca

Related Journal Article

http://dx.doi.org/10.1016/j.stem.2017.12.010

Share12Tweet7Share2ShareShareShare1

Related Posts

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.