• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chinese scientists reveal a novel signaling pathway for chilling…

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: XU Yunyuan

The ability of plants to tolerate chilling stress is fundamental in determining the growing season and geographical distribution of plants. Local temperature anomalies caused by global climate change directly threaten crop production.

Improvement of chilling tolerance in rice varieties requires clarifying the regulatory mechanisms of chilling signaling pathways.

The primary signal transduction pathway of chilling tolerance in rice has been established already, but how the diverse components are regulated is not clear.

OsbHLH002 is one of more than 100 members of the bHLH transcription factor family in rice and has the highest homology with Arabidopsis ICE1 protein, which is one of the core members in the cold signaling pathway in Arabidopsis (hence OsbHLH002 is also called OsICE1).

The research team led by Prof. CHONG Kang from the Institute of Botany of the Chinese Academy of Sciences has revealed a new mechanism for chilling tolerance mediated by OsMAPK3-OsbHLH002-OsTPP1 in rice.

The research team had shown in 2009 that overexpression of the wild rice gene OrbHLH2 enhanced tolerance to osmotic stress in Arabidopsis.

This time they discovered that the cold-activated protein kinase OsMAPK3 phosphorylates the transcription factor OsbHLH002/OsICE1 directly to enhance its transactivation activity.

Moreover, OsMAPK3 attenuated the interaction between OsbHLH002 and E3 ubiquitin ligase OsHOS1, which led to reduced ubiquitination and degradation of OsbHLH002.

The increase of the protein content and transactivation activity of OsbHLH002 effectively activates the expression of OsTPP1 (encoding trehalose-6-phosphatase) to promote the hydrolysis of trehalose-6-phosphate, increasing the trehalose content and enhancing the chilling tolerance of rice.

These results established a novel pathway OsMAPK3-OsbHLH002-OsTPP1. This pathway transduces the cold signal from the kinase cascade system to the nucleus and promotes synthesis of an osmotic protectant to regulate the chilling tolerance in rice.

###

This finding has been published in Developmental Cell in an article entitled "OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance."

The study was supported by the Chinese Ministry of Agriculture, the Chinese Academy of Sciences and the National Natural Science Foundation of China.

Media Contact

CHONG Kang
[email protected]

http://english.cas.cn/

Original Source

http://english.cas.cn/newsroom/research_news/201712/t20171215_187965.shtml http://dx.doi.org/10.1016/j.devcel.2017.11.016

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Texas A&M Scientists Harness AI to Uncover Genetic ‘Time Capsule’ Unique to Each Species

November 13, 2025
blank

Comprehensive Review Examines Wearable Sensors and Their Multimodal Physiological Signals for Affective Computing

November 13, 2025

Addressing Oxygen Management Challenges in India Post-COVID

November 13, 2025

Newly Discovered Predatory “Warrior” Resembled Early Crocodiles and Roamed Before the Dawn of Dinosaurs

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Texas A&M Scientists Harness AI to Uncover Genetic ‘Time Capsule’ Unique to Each Species

Comprehensive Review Examines Wearable Sensors and Their Multimodal Physiological Signals for Affective Computing

Addressing Oxygen Management Challenges in India Post-COVID

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.