• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers map paths to cancer drug resistance

Bioengineer by Bioengineer
December 23, 2014
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers led by Duke Cancer Institute has identified key events that prompt certain cancer cells to develop resistance to otherwise lethal therapies.

wood lab

By mapping the specific steps that cells of melanoma, breast cancer and a blood cancer called myelofibrosis use to become resistant to drugs, the researchers now have much better targets for blocking those pathways and keeping current therapies effective.

The findings are published in two papers Dec. 23, 2014, in the journal Science Signaling.

“Clinical resistance to anticancer therapies is a major problem,” said lead author Kris Wood, Ph.D., assistant professor of Pharmacology and Cancer Biology at Duke. “The most logical way to solve the problem is to understand why tumor cells become resistant to drugs, and develop strategies to thwart these processes.
“In our studies, we developed a screening technology that allows us to quickly identify the routes cells can use to become resistant, and using that information, we were able to show that these mechanisms seen in the laboratory are actually also occurring in patients’ tumors,” Wood said.
Wood and colleagues conducted a broad survey of the known cell-signaling pathways that, when activated, have the potential to trigger resistance to drugs. Using this screening technology, they were able to corroborate the results of earlier drug-resistance studies, while also finding new pathways that had not previously been described.
The new mechanisms they identified in the laboratory were also clinically relevant, appearing in tumor cells from patients who had grown resistant to therapies.

“Interestingly, the mechanisms are quite similar among all three of the cancer types,” Wood said. “In breast cancer and melanoma, our findings suggest the same Notch-1 pathway as a potential driver of resistance to a wide array of targeted therapies—a role that has not been widely acknowledged previously.”

Wood said that in myelofibrosis, the researchers tracked a pair of separate signaling pathways downstream of an important signaling molecule called RAS. When activated, these pathways promote resistance to current standard-of-care targeted drugs by suppressing cell death. In the second Science Signaling paper, the researchers suggest that targeting the pathways downstream of RAS may sustain the potency of current therapies.

“Together, these findings improve our ability to stratify patients into groups more and less likely to respond to therapy and design drug combinations that work together to block or delay resistance,” Wood said.

Story Source:

The above story is based on materials provided by Duke University.

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.