• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

In lab research, scientists slow progression of a fatal form of muscular dystrophy

Bioengineer.org by Bioengineer.org
January 23, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Saint Louis University

ST. LOUIS — In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne muscular dystrophy (DMD), providing a promising approach in designing new medications for those suffering from DMD.

DMD is a fatal form of a muscle wasting disorder that affects one out of every 5,000 to 10,000 boys. The illness is caused by mutations in a gene on the X chromosome. With treatment, those with DMD have an average lifespan of around 25 years. Boys with the illness typically need to use a wheelchair by age 12 and require mechanical ventilation to help with breathing. Many eventually suffer cardiac or respiratory failure.

Thomas Burris, Ph.D., chair of pharmacology and physiology at Saint Louis University and Colin Flaveny, Ph.D., assistant professor of pharmacology and physiology at SLU, study natural hormones that regulate nuclear receptors. By understanding how the body's natural hormones operate, they aim to develop synthetic compounds to target these receptors in order to create drugs to treat diseases.

In the course of this work, Burris and Flaveny have explored the roles of the nuclear receptor REV-ERB, which regulates key processes in the body, from sleep to cholesterol, and, most recently, muscle regeneration.

"Recently, we found that REV-ERB appears to play unique roles for each stages of muscle tissue development," Flaveny said.

Muscle stem cells which help replace damaged muscle tissue produce myoblasts that will either reproduce (proliferate) or form muscle tissue (differentiate).

A decline in expression of REV-ERB leads to myoblast differentiation. Conversely, an increase in REV-ERB expression is involved in the regulation of mitochondrial and metabolic function in fully differentiated skeletal muscle.

The team showed that REV-ERB is a regulator of muscle differentiation, and that a drug that inhibits this receptor, called SR8278, stimulates muscle regeneration after acute injury.

Following up on these promising results, they decided to explore whether the drug SR8278 could slow the progression of muscular dystrophy in an animal model.

DMD patients experience ongoing cycles of muscle destruction and regeneration that promote inflammation, fibrosis (scarring), and the loss of skeletal and cardiac muscle function.

Validating their theory, the research team discovered that SR8278 increased lean mass and muscle function and decreased muscle fibrosis and muscle protein degradation in mice.

"These results suggest that REV-ERB is a potent target for the treatment of DMD," Burris said. "This is an encouraging finding as we search for better treatments for those with this debilitating illness."

###

Other researchers on the project include Ryan D. Welch, Cyrielle Billon and Aurore-Cecile Valfort.

The study was supported by a grant from the National Institutes of Health (grant number MH093429).

Saint Louis University School of Medicine

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious diseases.

Media Contact

Carrie Bebermeyer
[email protected]
314-977-8015
@SLU_Official

http://www.slu.edu

Original Source

https://www.slu.edu/news/2017/december/dmd-research.php http://dx.doi.org/10.1038/s41598-017-17496-7

Share12Tweet7Share2ShareShareShare1

Related Posts

Hidden Parasites in Saudi Rodents: Molecular Insights

Hidden Parasites in Saudi Rodents: Molecular Insights

January 13, 2026
High Helminth Seropositivity in Immunosuppressed Patients

High Helminth Seropositivity in Immunosuppressed Patients

January 13, 2026

Tumor Exosomal tsRNA Drives Lung Cancer Immune Tolerance

January 13, 2026

Blood Ratios Signal H. pylori Gastritis in Kids

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    72 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hidden Parasites in Saudi Rodents: Molecular Insights

High Helminth Seropositivity in Immunosuppressed Patients

Tumor Exosomal tsRNA Drives Lung Cancer Immune Tolerance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.