• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

‘Simple, but powerful’ model reveals mechanisms behind…

Bioengineer.org by Bioengineer.org
January 20, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The Scripps Research Institute

JUPITER, Fla. – Dec. 18, 2017 – All things must come to an end. This is particularly true for neurons, especially the extensions called axons that transmit electrochemical signals to other nerve cells. Without controlled termination of individual neuron growth, the efficient and accurate construction of a nervous system is in serious jeopardy.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have now uncovered new insights into the regulatory network behind that termination. The study, led by TSRI Associate Professor Brock Grill, PhD, was recently published online ahead of print in the journal Development.

The scientists focused on axons, long cellular structures that project outward from the neuron body. When nerve cells fire, it's the axon that transmits the electrochemical signal to other neurons. Over the course of their development, axons extend, change their growth in response to cellular guidance cues and form synapses.

At the heart of this process is a specialized structure on the end of each axon called a growth cone. Successful development depends on the growth cone stopping at the correct destination and when the axon is the correct length, a process known as axon termination.

Using the nematode worm C. elegans as a model, Grill and his colleagues found for the first time that growth cone collapse prior to axon termination is protracted as the growth cone transitions from a dynamic to a static state.

"We know very little about the process of how axons actually stop growing in a living animal," Grill says. "What we found in our simple, but powerful model is that a signaling hub protein called RPM-1 is required to regulate the collapse of growth cones during axon termination."

It's the protracted nature of the process, Grill says, that is likely to make the transition-and the termination-permanent.

These findings provide new details on how growth cone collapse is regulated during axon termination in vivo. The study also shows that RPM-1 signaling destabilizes nerve cell microtubules-large molecules that provide critical cell structure-to facilitate growth cone collapse and axon termination.

When the scientists looked at the relationship between RPM-1 and other regulators of microtubule stability, they were surprised by the results.

They found that that while RPM-1 signaling destabilizes axon microtubules, the microtubule stabilizer Tau potentially inhibits RPM -1, something that was previously unknown. "People have very little knowledge about how TAU works under normal physiological conditions," says TSRI Research Associate Melissa Borgen, PhD, first author of the study.

"Our results suggest that Tau inhibition of RPM-1 is necessary for proper axon development, and offers the first evidence that RPM-1 can be regulated in vivo in neurons."

The research has implications for the development of neurological disorders as well. In mouse models, RPM-1 is an active force in axon degeneration and TAU has been linked to neurological disorders, including Alzheimer's disease and frontal temporal dementia.

"You wouldn't necessarily have thought Tau and RPM-1 would function this way," Grill says. "That's the power of genetics. Although we assessed the genetic relationship between Tau and RPM-1 in axon development, our results could have important implications for neurodegeneration."

###

In addition to Grill and Borgen, the other author of the study, "RPM-1 Regulates Axon Termination by Affecting Growth Cone Collapse and Microtubule Stability," is Dandan Wang, PhD, of TSRI.

The study was supported by the National Institutes of Health (grant R01 NS072129) and the National Science Foundation (grant IOS-1121095).

Media Contact

Stacey Singer DeLoye
[email protected]
561-228-2551
@scrippsresearch

http://www.scripps.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Adverse Events in Asian Adults on Brivaracetam

September 13, 2025

Tumor Microenvironment Dynamics in Breast Cancer Therapy

September 13, 2025

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Blocking Tumors: PD-L1 siRNA Boosts Immunotherapy

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Adverse Events in Asian Adults on Brivaracetam

Tumor Microenvironment Dynamics in Breast Cancer Therapy

Extraction Methods Impact Idesia Polycarpa Oil Quality

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.