• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Researchers develop device that emulates human kidney function

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Gretchen Mahler

BINGHAMTON, NY – Instead of running tests on live kidneys, researchers at Binghamton, University State University of New York have developed a model kidney for working out the kinks in medicines and treatments.

Developed by Assistant Professor Gretchen Mahler and Binghamton biomedical engineering alumna Courtney Sakolish PhD '16, the reusable, multi-layered and microfluidic device incorporates a porous growth substrate, with a physiological fluid flow, and the passive filtration of the capillaries around the end of a kidney, called the glomerulus, where waste is filtered from blood.

"This is a unique platform to study interactions between drugs and cells or tissues, specifically in the kidney, where current models were lacking," said Sakolish. "These platforms will, hopefully, in the future, be used as an animal alternative during pre-clinical testing to more accurately direct these studies toward successful results in humans."'

"This is tissue engineering, but not for the purpose or replacing an organ or tissue in a person," said Mahler. "The idea is that we can recreate the major organ functions in a simplified way for use as a drug screening tool. Finding new drugs is very hard, expensive and inefficient. We hope that by using human cells in a physiological environment we can help to direct resources toward the most promising new drug candidates and determine that other new drug candidates will fail, faster."

Results suggest that cells grown in the device exhibit more natural behaviors than when grown in traditional culturing methods, and the filtration by the glomerulus is necessary for healthy cell function.

"We found that the more complex, dynamic culturing conditions (like those used in this project) are necessary to accurately predict renal drug toxicity in human systems," said Sakolish. "When we compared physiological renal function and drug toxicity in traditional static culturing against our new model, we found significant differences in the ways that cells behaved. In our platform, cells looked and acted like those that you would find in the body, showing more sensitive responses to drugs than traditional static culturing."

Mahler said that while others have developed microfluidic models of the proximal tubule before, this is the first to offer glomerular filtration.

"This type of device uses human cells in a dynamic, more physiologic environment, potentially making it better at predicting the body's response to drugs than animals (animal effectiveness studies often don't translate to humans) or static cell cultures, which are the most commonly used preclinical screening tools," said Mahler.

###

This work was supported by the Clifford D. Clark Graduate Fellowship, the Binghamton University Howard Hughes Medical Institute Program, the National Science Foundation, National Institutes of Health, the SUNY Research Foundation and the Michael Connolly Endowment Fund.

The paper, "A novel microfluidic device to model the human proximal tubule and glomerulus," was published in RSC Advances.

Media Contact

Gretchen Mahler
[email protected]
607-777-5238
@binghamtonu

http://www.binghamton.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Lu–Hf Isotopes Reveal Ryugu’s Ancient Fluid Flow

September 10, 2025

Eye and Blood Protein Shows Strong Link to Cognitive Performance, Study Finds

September 10, 2025

Study from USF Explores the Effects of Menopause on Women’s Voices and Its Significance

September 10, 2025

Advancing Sustainability: Green Marketing and TQM in Nursing

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    60 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lu–Hf Isotopes Reveal Ryugu’s Ancient Fluid Flow

Eye and Blood Protein Shows Strong Link to Cognitive Performance, Study Finds

Study from USF Explores the Effects of Menopause on Women’s Voices and Its Significance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.